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Abstract:  One of the main motivations for publishing this paper is to 
make available a matrix of phone-distance measures which may be useful in 
dealing with large corpora of conversational speech.  The paper reports how 
this matrix of phone-distances was created from transcriber labeling 
disagreements, and how it can be used in a dynamic time warping algorithm 
to align phonetic transcriptions of conversational speech with their citation 
forms. The weighted string edit distance produced by the phone-distance 
DTW algorithm may also be useful in calculating neighborhood densities 
for studies of auditory word recognition.
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1. Introduction

For phonetic and phonological analyses of speech corpora it is necessary to map phonetic 
transcriptions of actually produced speech onto citation forms of the words spoken, because 
the goals of many analyses involve tabulating patterns in the relationship between the citation 
forms of words and their realizations in speech. The patterns of interest in these types of 
analyses are substitutions, deletions, and insertions.  

For example, in segmental descriptions of casual speech processes we say that lean 
bacon may be pronounced lea[m] bacon a substitution of [m] for [n], or just now may be jus’ 
now a deletion of [t], or jiust now an insertion of [i]. To align the phonetic transcriptions of 
the citation pronunciation and of the actual pronunciation we need to perform a mapping that 
will correctly detect deletions and insertions and map similar segments onto each other.  

Other areas of spoken language research also rely on string edit distance as a measure 
of word similarity. In psycholinguistic studies of auditory word recognition it has been found 
that lexical neighborhood density is an important parameter (Luce and Pisoni, 1998). Lexical 
neighbors are often determined by an edit distance rule attributed to Greenberg and Jenkins 
(1964) in which the number of insertions, deletions, and substitutions required to change one 
phonetic string into another is used as the word similarity metric.  Words that are similar to a 
target word with a distance of one (i.e., they differ by a single substitution, insertion, or 
deletion) are considered to be lexical neighbors of the target word.  The roughness of this 
measure is apparent in the neighbors of reed which include lead, seed, keyed, etc. where lead 
is more similar to reed than is keyed. Thus, a more sensitive measure of word similarity 
might be useful in psycholinguistic research.

This paper reports a variant of dynamic time warping (Wagner and Fischer, 1974; 
Sankoff and Kruskal, 1983) that is adapted for use with phonetically transcribed spoken 
language corpora. The goals of the algorithm were to provide an accurate, automatic, and 
consistent alignment of phonetic transcriptions onto citation forms. Some example 
alignments drawn from the “Variation in Conversation” (ViC) corpus (Pitt et al., 2003) are 
shown in table 1. Note the the phonetic forms are written in an extension of the ARPABET 
in which [iyn] stands for nasalized [iy], [em] is a syllabic [m], and [er] is a syllabic [r] [see 
Ohio State University (2002) for an explanation of the symbol set].

In one instance of the word twiddling the speaker deleted two segments [d] and [ng] 
and substituted [ah] for [ih] and [iyn] for [ih].  In something an initial [t] was inserted, the 
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[m] became a [p], the [th] and [ih] were deleted, and the final [ng] was replaced by [em].  In 
predominantly we see five deletions in a row in this three-syllable pronunciation of a five 
syllable word.  In hundred four of the seven segments were deleted. “Massive” reductions like 
these are quite common in the corpus (Johnson, 2003) and thus a robust mapping algorithm 
was needed because pronunciations such as these with quite a substantial amount of deviation 
between the citation form and the actual pronunciation are difficult cases for a phonetic string 
mapping algorithm.

 
Table 1. Examples of mapping actual pronunciation onto citation form pronunciation. The term ed refers to 

the edit distance calculated in the dynamic time warping routine.

Word   ed   Citation form Actual pronunciation

twiddling   0.527     t w ih d el ih ng t w ah . l iyn . 
something   0.672     . s ah m th ih ng t s ah p . . em 
predominantly   0.516     p r ih d aa m ih n ax n t l iy p er . d aa m . . . . . l ax 
hundred   0.669     hh ah n d r ax d . ah nx . er . . 

2. The ViC corpus

The dynamic time warping algorithm described in this paper was developed for use in 
analyzing variation in a large corpus, and was developed using phone similarity data produced 
in a transcriber reliability study done as a part of this corpus project. The Variation in 
Conversation (ViC) corpus is a large database of recorded conversational speech. The 
following description of the corpus is a brief synopsis of the fuller account given in Pitt et al. 
(2003).

Forty talkers were from the Columbus, OH community. All were natives of Central 
Ohio, and the sample was stratified for age (under 30 and over 40) and sex, and the sampling 
was limited to middle-class caucasians. Talkers were invited to come to the Ohio State 
University campus to have a conversation about everyday topics such as politics, sports, 
traffic, schools. After the interview, talkers were debriefed on the conversation’s true purpose 
and all consented to having their speech used in research. Interviews were conducted in a 
small seminar room by one of two interviewers (one male and one female) who had been 
trained to conduct sociolinguistic interviews. Talkers sat in a chair facing the interviewer and 
wore a head-mounted microphone which fed into a DAT recorder.  

Talkers spoke a total of 306,652 word tokens, of which ~100,000 have been 
phonetically transcribed with hand-corrected phonetic labels (this includes hesitation noises 
like um and er, which were not included in other studies of the same set of speakers, e.g., 
Johnson (2003).  The size of the hand-labeled corpus is approximately twice the size of the 
TIMIT read-speech corpus (Zue et al., 1990). Phonetic transcription proceeds in three steps. 
First, an orthographic transcription is produced. Second, an HMM-based recognizer performs 
a forced alignment of dictionary pronunciations onto the acoustic signal (Wightman and 
Talkin, 1997). Third, a team of phoneticians (graduate students and post-docs in linguistics) 
hand-correct the aligner output. So far in our phonetic transcription effort, recordings of 14 of 
the 40 speakers have been phonetically tagged and served as the testbed for the DTW 
algorithm reported here.

3. Transcriber disagreements

A transcription consistency study was conducted using data from the ViC corpus (Raymond, 
2003) and because the transcriber disagreement data from that study plays a central role in the 
phone-distance mapping algorithm, a brief description is in order.  For a fuller description of 
the transcriber reliability study, see Raymond (2003). Four transcribers phonetically 
transcribed four 1-min samples from four different talkers following the conventions 
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documented in the project coding protocol (Kiesling and Raymond 2000). The speech 
samples started approximately 10 min into the interviews with four different talkers (young 
male, young female, old male, old female) and in total consisted of about 730 words 
(including dictionary words and other types of “word events”, such as lexical cutoffs and 
fillers) and about 2300 phonetic segments (with four transcribers we have 13,800 pairs of 
phonetic transcriptions). Transcribers worked independently, starting with the extant English 
text transcriptions for each sample. The phonetic transcriptions were equated for comparison 
across transcribers according to time-stamps associated with the phonetic symbols to assure 
that comparisons were of phonetic labels that had been applied to the same stretch of speech.

Of prime interest here is that this procedure produced a transcriber disagreement 
matrix. For each pair of symbols in the phonetic alphabet we have a measure of how often 
one transcriber chose symbol 1 while another transcriber chose symbol 2. This matrix of 
transcriber disagreements provides a measure of the subjective similarity of the phonetic 
symbols to each other, and thus can be used to give a weight to each possible phone 
substitution in a dynamic time warping algorithm. 

4. From disagreements to distance

For any two phones in the transcriber disagreement matrix we have a submatrix of four cells. 
So, for the phones i and j, we have a submatrix with the probability of transcriber 
disagreements when transcriber 1 chose symbol i and transcriber 2 chose symbol j or vice 
versa (pji or pij), and the probabilities of transcriber agreements when both transcribers chose 
the same symbol (pjj or pii).

Shepard (1972) suggested a simple heuristic method for calculating psychological 
similarity and distance from such a matrix.  Similarity, according to Shepard, is found by 
scaling the disagreements involving the two sounds by the agreements. Thus, Eq. (1) gives 
us a value Sij which is the similarity between phone i and phone j. A small constant was 
added to the numerator in (1) to avoid Sij = 0 in (2). Distance is then the negative of the 
natural log of the similarity [Eq. (2)]. This is Shepard’s law, which states that the 
relationship between perceptual distance and perceptual similarity follows an exponential 
function:

† 

ijS =
ijp + jip

iip + jjp
    , (1)

† 

ijd = - ln( ijS )     . (2)

I used this method with the Raymond (2003) transcriber disagreement matrix to 
calculate the distance between each phone in the ViC phonetic symbol set, producing a 
“phone distance” matrix.  Because substitutions normally add a weight of 2 to the string edit 
distance in dynamic time warping, I scaled the distance values dij so that the maximum 
distance is 2 and all other distances between phones fall between 0 and 2. There are many 
instances of 2 in the phone distance matrix because many of the phones were never 
substituted for each other. For example, there was never a case where one transcriber chose to 
call a segment [t] and another transcriber labeled the same segment [aa], so the distance 
between [t] and [aa] is 2.  On the other hand, segments that were transcribed [aa] by  one 
transcriber were frequently transcribed [ao] by one of the other transcribers, so the calculated 
distance between these two phones turned out to be 0.623.

Some “touchups” of the phone distance matrix were required.  For example, some 
symbols were not used in the transcriber reliability study, or occurred so infrequently as to 
provide faulty estimates of phonetic similarity. In these cases (3.5% of the total number of 
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symbol pairs) I estimated phonetic similarity using my best guess based on the calculated 
similarity of comparable pairs. For example, the nasalized variants of some but not all vowels 
were available in the reliability corpus.   Nasalized vowels for which data were not available 
were given similarity values comparable to the nasalized vowels that did appear in the matrix 
(similarity in relation to their non-nasal counterparts as well as similarity in relation to nasal 
consonants). My subjectively estimated similarity values are listed in the confusion matrix 
with a single digit after the decimal point, while the automatically generated similarity values 
appear in the matrix with many digits after the decimal point.

The phone-distance matrix described in this section is available with this paper 
(Mm.1. Phone-distance matrix (20 Kb)).

5. Dynamic time-warping

In the simplest case (Sankoff and Kruskal, 1983; Wagner and Fischer, 1974), string edit 
distance is calculated by finding the best mapping between two strings using a weighting 
function such that a substitution of one symbol for another costs 2 (one deletion and one 
insertion), each deletion or insertion costs 1, and the identity mapping costs 0.  So, for 
example the string edit distance between [s t aa p] stop and [t aa p] top is 1 ([s] deletion), the 
distance between [t ae p] tap and [k ae p] cap is 2 (substitution of [k] for [t]), and the distance 
between [t ay p] type and [ay] I is also 2 (deletion of [t] and [p]).

In this method, edit distance is only very roughly correlated with subjective distance 
or perceptual confusions. Consider for example the pairs lead/reed ([l iy d]/[r iy d]) and 
lead/seed ([l iy d]/[s iy d]). The standard string edit distance for these pairs does not 
differentiate them. They both are related by a substitution and thus have an edit distance of 2, 
which when normalized by the number of symbols in the pair (6) is 2/6 = 0.3333.  On the 
other hand, string edit distance using the phone substitution distances calculated from 
transcriber disagreements (Sec. 4) does differentiate these pairs. The edit distance for lead/reed 
is 0.27 while the edit distance for lead/seed is 0.33.  Thus, weighting the cost of a 
substitution by a measure of the phonetic distance between the symbols gives a better 
estimate of the apparent distance between the word forms and so may provide a better 
estimate of lexical neighborhood density.

Calculating string edit distance in this way should also provide a better mapping 
between phonetic transcriptions and their citation forms. I turn now to an evaluation of this 
claim.

6. Evaluation of the algorithm

To evaluate the phone-distance-weighted algorithm I compared alignments done using the 
phone-distance matrix to alignments done with the standard string edit distance DTW 
algorithm.

The test set is composed of the phonetically transcribed words in the ViC corpus, as 
described in Sec. 2 above. In total, the mapping between phonetic transcriptions and citation 
forms was calculated for 99,677 words using the standard string edit algorithm and the 
phone-distance-weighted algorithm. Usually the two methods gave the same mapping of 
phonetic transcription onto citation form, but for 8.4 % of the words (8347 productions) the 
two algorithms produced different mappings.

The key difference between the two algorithms is that the standard algorithm 
sometimes produces more than one “best” path relating the two strings whereas the phone- 
distance algorithm generally produces only one best mapping. The behavior of the standard 
algorithm is underspecified with respect to ties in string edit distance, so I implemented it to 
prefer substitutions over deletions and insertions. This causes the standard algorithm to map 
[k ae t] onto [k ae p] (with a substitution) rather than mapping [k ae . t] onto [k ae p .] (with 
one insertion and one deletion) even though the string edit distance is 2 in both of these 
mappings. This implementation of the standard algorithm produces the best match to the 
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phone-distance algorithm. 
However, even with this optimal implementation, when the standard algorithm is 

faced with both deletions and substitutions in a mapping, it stacks up the deletions at the 
beginning of the word, while the phone-distance algorithm lines up similar, but nonidentical, 
phonetic elements in the two strings. The improvement offered by the phone-distance 
algorithm is evident in examples in which the two algorithms produce different mappings 
between citation form and phonetic transcription (see Table 2). The examples in Table 2 are 
typical cases that illustrate the general pattern of behavior seen in most of the 8347 cases in 
which the two methods differ. 

Consider for example the word that. The phone-distance algorithm correctly lined up 
the vowels [ae] and [ax], showing that the final [t] was deleted, while the standard method 
placed the deletion early in the string suggesting that [ax] is a substitution for [t].  The early 
placement of deletions is also apparent in longer words.  For example, in one instance of 
forgot the standard method lines up the syllabic [er] with [g] while the phone-distance 
method correctly aligns [r] and [er].

Table 2. Examples of the mapping from phonetic transcriptions to citation forms 
produced by the phone-distance weighted and the standard DTW algorithms.

Word Phone-distance Standard

that dh ae t   dh ae t
dh ax . dh .  ax 

forgot     f ow r g aa t f ow r g aa t
f   .  er .  aa t f   .   . er aa t 

pregnant p r eh g n ax n t p r eh g n ax n t
p r eh g n axn . . p r eh g  .   .  n axn

material m ax t ih r iy el m ax t ih r iy . el
m ax t iy r  .   el m ax t  .   .  iy r el

probably p r aa b ah b l iy p r aa b ah b l iy
p r ay  .   .   .  .  . p r   .   .   .   .   . ay

 In the production of pregnant shown in Table 2, the phone-distance algorithm’s 
ability to line up [ax] with its nasalized counterpart [axn] shows that the final [n t] cluster of 
the citation form was deleted in this production. The analysis given by the standard algorithm 
is that the medial [n ax] were deleted and that [t] was realized as [axn].  

The next example is another case where the standard algorithm’s tendency to prefer 
deletions over substitutions leads to a misalignment that is avoided by the phone-distance 
model. The word material was pronounced with [iy] in the second syllable instead of [ih].  
The standard algorithm posits deletion of [ih] and [r] in order to line up the transcribed [iy] 
with the citation form [iy].  Then it has to posit that an [r] was inserted. The phone-distance 
algorithm avoids this mistake by accepting the substitution of [iy] for [ih] in the second 
syllable.

There are cases in this database that indicate that the segmental analysis implicit in 
phonetic transcription is inadequate to account for the patterns of phonetic reduction in 
conversational speech.  In some of these cases it seems as if the standard algorithm’s 
alignment might be just as correct as the mapping given by the phone-distance algorithm.  
For example, in one production of probably we have the pronunciation [p r ay]. The 
diphthong in this production seems to be a coalescence of the first and last vowels of the 
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word (and who knows, maybe the [ah] vowel is in there too).  The phone-distance mapping 
aligns [ay] with the first vowel [aa], while the standard algorithm puts off the substitution to 
the end of the string, thus lining [ay] up with [iy].

In conclusion, the mapping algorithm described in this paper, and crucially the use 
of an empirically derived matrix of phone distances, provides a better mapping between 
phonetic transcriptions and citation forms than can be produced by a standard dynamic time 
warping algorithm. These two algorithms give different mappings in 8.4% of the words in 
the ViC corpus, and in all of the cases examined for this study the phone-distance algorithm 
produced an equally good (in unusual cases like probably) or better mapping than did the 
standard DTW algorithm.
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