Acoustic vowel reduction in Creek: Effects of distinctive length and position in the word

Keith Johnson
Ohio State University
Jack Martin
College of William and Mary

Running head: Creek Vowel Reduction

Address:
Keith Johnson
222 Oxley Hall
1712 Neil Ave.
Columbus, OH 43210-1298

Phone: 614 292-1841
Fax: 614 292-8833

Abstract

Eight speakers (4 male and 4 female) of the Muskogee dialect of Creek pronounced a set of words illustrating the vowels and diphthongs of Creek. These recordings were analyzed acoustically and data on vowel duration and vowel formant frequencies are presented in this paper. The ratio of the durations of distinctively long and short vowels was 1.8 - this ratio showed a sex difference, being larger for female speakers than it was for male speakers. Final lengthening was also observed: both distinctively long and short vowels were longer in word final position than in word initial position. The vowel formant data showed two additive, orthogonal phonetic vowel reduction processes: short vowel centralization and positional reduction. Short vowel centralization has been found in many languages. Distinctively long vowels in Creek tended to be more peripheral in the acoustic vowel space than were the distinctively short vowels. Positional reduction is also evident in these data: vowels in word final position were reduced relative to vowels in word initial position. Short vowel centralization was preserved in both positions in the word. Positional reduction has been documented in several languages, and these results from Creek lend support to the hypothesis that it is a general property of speech production. The results of this acoustic-phonetic study, the first such study of Creek, are discussed in light of cross-linguistic phonetic trends.

Introduction

Creek is a Muskogean language spoken by several thousand individuals in eastern Oklahoma and central Florida. The largest dialect of Creek is Muskogee, followed by the Oklahoma Seminole and Florida Seminole dialects. Other languages in the family include Choctaw, Chickasaw, Alabama, Koasati, Apalachee, Hitchiti and Mikasuki.

This paper describes an acoustic-phonetic study of the vowels in the Muskogee dialect of Creek, in which patterns of vowel duration and vowel formant frequency were examined. The study described in this paper builds on the phonemic descriptions of Haas (1940, 1977a,b) to provide the first acoustic-phonetic study of Creek vowels.

The six distinctive vowels of Creek contrast for length, frontness, and height as shown in (1). In addition to these monophthongal vowels there are three diphthongs /ey/, /oy/, and /aw/11, which will be touched on briefly in this report. We will also discuss briefly consonant-vowel interactions in the realization of short $/ \mathrm{a} /$.
(1) The distinctive vowels of Creek.

| | short vowels | long vowels | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | front | back | front | back |
| nonlow | i | o | i: | o: |
| low | a | | a: | |

The data reported here bear on a couple of important issues in phonetic theory. Lindblom (1963) proposed a model of vowel reduction which related vowel quality with vowel duration. In this model, short vowels are centralized relative to long vowels because of vowel target 'undershoot' in short vowels. This account predicts that, all other things being equal, the short vowels of Creek will be more centralized than the long vowels. As we will see, this prediction holds for the Creek vowels (as was noted by Haas, 1940).

We recorded examples of the Creek vowels in both the first and last syllables of words and because the words were pronounced in isolation these positions are respectively utterance initial and final as well. Numerous previous studies have found final lengthening in a variety of different languages (see review in Lehiste, 1970). As we

[^0]will see below, vowels in final position in Creek words were longer than vowels in initial position.

These two findings (short vowel centralization and final lengthening) set the stage for the most interesting of our results. We found that, in Creek, final vowels are centralized relative to initial vowels. We call this phenomenon positional reduction. A few recent reports have found similar effects variously attributed to supralaryngeal declination (Vaissière, 1986; Vayra \& Fowler, 1992; Krakow, Bell-Berti \& Wang, 1995), initial strengthening (Jun, 1993; Fougeron \& Keating, 1997), or final fade (Herman, Beckman, \& Honda, 1997). Our study is similar to the study of Swedish vowels reported by Nord (1986) in that we find that final vowels though longer than initial vowels are nonetheless reduced. Nord attributes a similar effect in his data to 'force-dependent' factors (attributing this to Lindblom, 1968). We will return to a discussion of 'force' factors in the conclusion, and here wish only to note that, unlike short vowel centralization and final lengthening, positional reduction has been observed in only a few languages (English, Swedish, Korean \& Italian), so this new data from Creek is an important addition to the literature.

In addition to the phonetic description of the Creek vowel system presented in the results section, the paper briefly touches on consonant-vowel interactions in the realization of short / a /, and on vowel formant trajectories of the diphthongs.

Method

Speakers

Eight speakers of the Muskogee dialect of Creek (4 women, 4 men) participated in this study. They were all native speakers of Creek who speak the language with their friends and family, and speak English with people who don't speak Creek. Their ages ranged from the early 50 s to the late 80 s at the time that these recordings were made. Some of the individual differences observed in these data might be due to dialect differences. However, this study was not designed to explore dialect differences, so the discussion here will focus on phonetic patterns which characterize these speakers as a group.

Word list

A word list illustrating phonetic contrasts in Creek was constructed in collaboration with the Creek linguist Margaret Mauldin. The portion of this list which dealt with vowel contrasts is shown in (2). The long and short monophthongal vowels [$\mathrm{a}, \mathrm{a}:, \mathrm{i}, \mathrm{i}:, \mathrm{o}, \mathrm{o}:]$ appeared in word initial and final position in near minimal sets. The list
also contained words which contrast three additional instances of low vowels and a set of words to illustrate the diphthongs.
(2) Words illustrating the Creek vowel contrasts.

	Initial vowels		
/a/	atá:pa wooden paddle	Final vowels	
/a:/	a:tamí car	locá turtle	
li/	itó tree	pocá: grandfather	
/i:/	í:ta another	pací pigeon	
/o/	opá owl	ocí: pecan	
/o:/	ó:fa inside	focó duck	
		kacó: berry	
	Variation in /a/	Diphthongs	
	lácci branch	láywa water	
	láksa hoof	láwki: deep (of water)	
	lá:ksa liar	lêykeys I'm sitting down	

Accent marks are used in transcribing Creek to indicate pitch (' indicating high pitch and ${ }^{\wedge}$ indicating falling pitch) and following Haas (1977a) high pitch is only marked on the last vowel in the word which has high pitch. For example, /a:tamí/ car has high pitch throughout, while /atá:pa/ wooden paddle has high pitch on the first two syllables and a fall to low pitch in the last syllable. These pitch patterns are shown in figure 1. Obviously, there are a number of detailed aspects of the pitch system in Creek which should be studied in future research. Future study may shed light on such details as the fundamental frequency (F0) dip in the second syllable of /a:tamí/ and the rising pitch over the first two syllables in /atá:pa/. For the purposes of the present paper it suffices to point out that the accent marks in our transcriptions should be interpreted as indicating the location of the last high pitched syllable of the word. ${ }^{2}$

[^1]

Figure 1. Example F0 traces of the words /a:tamí/ car and /atá:pa/wooden paddle showing the meaning of the accent marks in our transcription of Creek. In /a:tamí/ F0 remains high through-out the word while in /atá:pa/ F0 is high up to the end of the second syllable and then falls to a very low value. The speaker is JM, a male speaker with a low pitch range - from 50 Hz to 150 Hz in these graphs.

Recordings

Each recording session took about 45 minutes - including time to discuss the word list (only the vowel portion of the list is shown in (2)). Two to four speakers participated in each session. Speaker MM participated in each session and read each word first, then the other speakers also produced the word. We were careful to encourage the speakers to avoid imitating MM and our impression is that this instruction was taken seriously, leading to discussions of the words and occasionally to decisions by a speaker to use a different, more familiar word than the one intended. Two repetitions of the word list were recorded for each speaker in each session.

Six speakers were recorded with a Sure SM48 hand-held unidirectional microphone, which was passed from speaker to speaker during the recording session,

Table 1. Regression of acoustic measures from recordings of speaker MM made on separate days. Day 1 values are compared with day 2 values. $\mathrm{r}=$ the Pearson product moment correlation, $\mathrm{R}^{2}=$ the regression coefficient, $\mathrm{SE}=$ the standard error of measurement (RMS of the prediction residuals).
$\mathrm{N}=30$.

	r	R^{2}	SE
duration	.96	.92	25 ms
F1	.94	.88	67 Hz
F2	.99	.98	94 Hz
F3	.79	.62	247 Hz

Even if we assume that MM pronounced the words in exactly the same way on the two days, which is probably an overly strict assumption, we can see that the correlations are quite high for duration, F1, and F2. The standard errors indicate the average deviations of the acoustic measurements compared across the two data sets, and indicate the combined magnitudes of measurement error and token-to-token variability in these productions. The relatively poorer correlation (and higher standard error) for F3 is indicative of a difficulty in measuring F3, particularly in the vowels [i] and [i:]. This observation will affect our interpretation of the F3 data presented later in this section.

Factors affecting vowel duration

The measurements of monophthongal vowel durations found, as expected, that distinctively long vowels were longer than distinctively short vowels (average duration values of 225 ms and 124 ms respectively). Additionally, there were several sources of variation in vowel duration which we explored in an analysis of variance (ANOVA). ${ }^{3}$

The duration data from the monophthongal vowels in initial and final position
remainder of the variance is due to a combination of individual differences among the speakers, within-speaker variation across the two repetitions of each word, and measurement error.

The position of the vowel in the word had a reliable effect on vowel duration $[\mathrm{F}(1,164)=62.0, \mathrm{p}<0.01]$. Vowels in word final position were longer on average (201 ms) than vowels in word initial position (148 ms). This factor also interacted with the distinctive vowel length factor $[\mathrm{F}(1,164)=5.9, \mathrm{p}<0.05]$ - the difference between initial and final position was larger for distinctively long vowels than it was for distinctively short vowels. This interaction is shown in Figure 2.

Figure 2. Average vowel duration as a function of position of the vowel in the word, and the distinctive length of the vowel. The average duration difference between final and initial position was greater for distinctively long vowels than it was for distinctively short vowels. The error bars show the standard error of the mean.

It can also be seen in figure 2 that distinctive vowel length was reflected in the physical duration of the vowel $[\mathrm{F}(1,164)=231.3, \mathrm{p}<0.01]$. As mentioned above, the average duration of the long vowels was 225 ms , while the average duration of the short vowels was 124 ms . This duration difference gives a ratio of 1.81 (=225/124), i.e. long vowels were not quite twice as long as short vowels. Interestingly, this ratio is
essentially preserved in both word initial (1.805) and word final (1.827) positions, but shows more variation as a function of the sex of the speaker.

Speaker sex had a reliable effect on vowel duration $[\mathrm{F}(1,164)=25.8, \mathrm{p}<0.01]$. Women's vowels were on average longer than men's vowels (191 ms versus 158 ms). However, this difference was mediated by distinctive vowel length, as indicated by a reliable sex by length interaction $[F(1,164)=4.8, \mathrm{p}<0.05]$. This interaction is shown in figure 3. As the figure shows, the greatest difference between men and women was in the durations of the long vowels, with only a small difference seen in the durations of the short vowels. The average durations in Figure 3 give long/short vowel duration ratios of 1.87 for women and 1.76 for men.

Figure 3. Average vowel duration as a function of the distinctive vowel length and the sex of the speaker. Men and women differed from each other more in the durations of their long vowels than they did in the durations of their short vowels. The error bars show the standard error of the mean.

Vowel quality also had a reliable effect on vowel duration $[\mathrm{F}(2,164)=3.79$, p <0.05]. The low vowels [a] and [a:] were on average shorter than the high ([i] and [i:]) and mid vowels ([o] and [o:]), respectively 163, 175, and 186 ms . However, vowel quality interacted with word position $[\mathrm{F}(2,164)=5.2, \mathrm{p}<0.01]$ and inspection of this interaction showed that vowel quality had no effect on duration in word final position (all average durations about 200 ms) while there was a large effect of vowel quality on
duration in word initial position (low $=123 \mathrm{~ms}$, high front $=150 \mathrm{~ms}$, and mid back $=$ 172 ms).

None of the other interactions in the ANOVA reached statistical significance.

Interim discussion of vowel duration findings
Several of the vowel duration patterns found in Creek have been noted in other languages. Of course, that physical vowel duration is strongly correlated with distinctive vowel length is to be expected, however some of the ways that this distinctive length contrast is mediated by, or interacts with, other factors is of some interest.

It has been noted for several languages that syllables in phrase or utterance final position, as the final syllables in these isolated word productions were, tend to be longer than initial or medial syllables (Lehiste, 1970; Nakatani, O’Connor \& Aston, 1981; see below). This phenomenon has been called phrase final lengthening and pre-boundary lengthening, and has been described as a local tempo change as opposed to a change in gestural amplitude (Edwards, Beckman, Fletcher, 1991). There is some evidence (Buckley, 1998) that for a variety of languages iambic lengthening fails to occur in final syllables. Buckley speculates (fn. 5) that this failure of durational contrast in final syllables may be related to final lengthening, though our data (figure 2) suggests that a loss of durational contrast is not a necessary result of final lengthening.

It has also been noted in other studies that women tend to produce longer vowels in stressed position in English and in other ways provide stronger acoustic cues for linguistic contrasts than do men (Byrd, 1992; Whiteside, 1996). In this connection it is interesting that the vowel duration differences between men and women observed here were greater for the distinctively long vowels than they were for the distinctively short vowels. This interaction can be taken as suggesting that the gender difference was not one of different speaking rates over all, but rather a difference in the phonetic realization of the length contrast.

Finally an interaction of vowel quality and vowel duration has also been noted in many languages (Lehiste, 1970), however the pattern observed in these Creek data differs from the pattern usually found. Namely, rather than the more usual inverse correlation of vowel height and duration such that low vowels are long and high vowels are short, here we found that the low vowels had the shortest average duration. It is interesting that this pattern was only observed for vowels in word initial position. This may be due to the fact that the low initial vowels occurred in words of three syllables while the others occurred in two-syllable words. Several researchers (Lehiste, 1970; Nakatani et al., 1981) have found that vowel duration is inversely proportional to the
number of syllables in a word. This effect occurs in several languages including German (Malmberg, 1944), English (Jones, 1942), Dutch (Nooteboom, 1972), Hungarian (Tarnóczy, 1965), French (Roudet, 1910), Finnish (Iivonen, 1974), Estonian (Eek \& Remmel, 1974), Swedish (Lindblom, Lyberg \& Holmgren, 1981) \& Spanish (Hutchinson, 1973). If a similar effect occurs in Creek this would explain the shorter durations of the low vowels in word initial position. Further research on prosodic aspects of Creek would clarify this result.

The acoustic vowel space of Creek
Figure 4 shows the acoustic vowel space formed by the Creek long and short monophthongal vowels produced by women (top panel) and men (bottom panel). The vertical and horizontal dimensions in these graphs represent the frequencies of the two lowest vocal tract resonances (F1 and F2) and the ellipses encompass approximately 90\% of the measured values of each vowel.

Figure 4. Overview of the Creek acoustic vowel space for women (top panel) and men (bottom panel). The placement of the vowel symbols indicates the average formant values for each vowel and the ellipses indicate the principal components of variation, encircling approximately 90% of the measured values of each vowel.

As with the duration data we will explore several sources of the variance indicated by these ellipses using analysis of variance, but from figure 4 we can note some general features of the Creek acoustic vowel space. First, note that the formant frequencies of the long and short vowel pairs are very similar, as indicated by their largely overlapping ellipses. This suggests that these vowel pairs are distinguished primarily by duration. Second, note that the men and women have different ranges of vowel formant
frequencies. This is a reflection of an average difference in male and female vocal tract length due to the lowering of the male larynx during puberty. Third, note that for both male and female speakers the vowel triangle formed by the short vowels is contained within the vowel triangle formed by the long vowels. This is easiest to see by noting the locations of the vowel symbols - the average formant frequencies - in figure 4. The reduction of the vowel triangle size for short vowels compared with long vowels indicates that the short vowels are somewhat centralized relative to the long vowels (Lindblom, 1963). The related language Chickasaw shows a pattern of short vowel centralization (Gordon, Munro \& Ladefoged, 1997) as do many other languages (Lehiste, 1970: 30-3; see below). ${ }^{4}$

The F1 values of the monophthongal vowels in initial and final position were entered into an ANOVA with the same independent variables that were used in the analysis of the duration data: (1) position in the word - initial vs. final; (2) sex of the speaker - male vs. female; (3) distinctive vowel length - long vs. short; and (4) vowel quality - low, high front, and mid back. This statistical model accounted for about 89\% of the variance in the data $\left(\mathrm{R}^{2}=0.893\right)$.

As expected, F 1 frequency was affected by vowel quality $[\mathrm{F}(2,164)=582$, $\mathrm{p}<0.01]$. This can be seen in the vertical dimension of figure 4 , the low vowels had the highest F1 frequencies, the high vowels had the lowest F1 frequencies and the mid vowels had F1 frequencies between these. In addition there was a small overall effect of vowel length on F 1 frequency $[\mathrm{F}(1,164)=5.07, \mathrm{p}<0.05]$, however this effect is best interpreted by reference to the interaction between vowel quality and vowel length $[F(2,164)=13.3, \mathrm{p}<0.01]$. This interaction can be seen in figure 4 as the tendency for distinctively short vowels to have slightly less extreme F1 frequencies than the long vowels - short vowel centralization. The overall effect of vowel length falls out from the fact that for two of the vowels ([i] and [o]) centralization results in a higher F1 frequency for the short vowels, while only for short [a] does centralization result in a lower F1 frequency.

The sex of the speaker also had a significant effect on F 1 frequency $[\mathrm{F}(1,164)=$ 83.2, $\mathrm{p}<0.01]$. This effect, probably of vocal tract length differences between men and women, has been observed in numerous previous studies (see for example Peterson \&

[^2]Barney, 1952; Fant, 1973; and Bladon, Henton \& Pickering, 1986). Sex also interacted with vowel quality $[\mathrm{F}(2,164)=11.5, \mathrm{p}<0.01]$. This interaction is shown in figure 5 , which plots the mean values for male and female speakers in one graph. Notice that men and women differ on the vertical location of the mean values, the F1 frequency, more for the vowels [a:] and [a] than they do for the vowel [i:] and [i], with the sex difference for $[\mathrm{o}:]$ and $[\mathrm{o}]$ intermediate between the differences seen for the low and high vowels. This pattern of male/female difference in F1 has been found in previous research and may be due to differences in vocal tract geometry or speaking style (see Fant, 1973 for a discussion of this).

Figure 5. Average F1 and F2 frequencies of the monophthongal vowels of Creek produced by women (filled symbols) and men (open symbols). The size of the acoustic vowel space for each group of speakers is indicated by lines connecting the formant values of the distinctively long vowels (short vowel mean values are not labeled but appear near the relevant long vowels). Note that the size of the space is larger in the speech of women.

The only other significant effect in the statistical analysis of vowel F1 frequency was a reliable interaction between vowel quality and the position of the vowel in the word $[\mathrm{F}(2,164)=6.8, \mathrm{p}<0.01]$. This interaction is shown on the vertical dimension of
figure 6. On average, final vowels were closer to the center of the vowel space than were vowels in the initial syllable of the word. So, for example final [$\mathrm{o}:]$ had a higher F1 frequency than did initial [o:] and final [a:] had a lower F1 frequency than did initial [a:]. The vowel centralization that we see in figure 6 is reminiscent of the vowel centralization that we saw in figures $4 \& 5$ which was a function of the distinctive length of the vowel.

Figure 6. Average F1 and F2 frequencies of the monophthongal vowels of Creek produced in word/utterance final syllables (filled symbols) and in word/utterance initial syllables (open symbols). The size of the acoustic vowel space for each position is indicated by lines connecting the formant values of the distinctively long vowels (short vowel mean values are not labeled but appear near the relevant long vowels). Note that the size of the space is larger in word-initial syllables.

The F2 values of the monophthongal vowels were also analyzed in an ANOVA with the same factors that were tested in the analysis of F1 variation. This statistical model accounted for about 95% of the variance in the data $\left(\mathrm{R}^{2}=0.949\right)$.

Not surprisingly, vowel quality had a significant effect on F2 frequency $[\mathrm{F}(2,164)=1358.4, \mathrm{p}<0.01]$. This can be seen in figures 4-6 as the offset along the horizontal axis of the high front vowels [i: i] relative to the low central vowels [a: a], which are also horizontally offset relative to the mid back vowels [o: o]. As with F1, the
interaction of vowel quality and vowel length was significant $[\mathrm{F}[1,164)=21.4$, $\mathrm{p}<0.01]$. This interaction can also be seen in figures 4-6 -- the short front vowel has a lower value of F2 than the long front vowel, while the short back vowel has a higher value of F2 then the long back vowel. As with F1, the F2 data suggest that short vowels are somewhat centralized relative to the long vowels.

It is also not surprising that the sex of the speaker had a significant effect on F2 frequency $[\mathrm{F}(1,164)=197.6, \mathrm{p}<0.01]$. The $\mathbf{s e x}$ of the speaker also interacted with vowel quality $[\mathrm{F}(2,164)=29.6, \mathrm{p}<0.01]$. However, the pattern of the interaction is the mirror image of the pattern we saw in F1 (see figure 5). Where in the F1 data we found that the male and female speakers differed primarily for the non-front vowels, for F 2 we find that the largest difference between men and women was for the vowels [i:] and [i] the horizontal dimension in figure 5. The overall pattern of gender differences in the vowel space then are that men and women are not very different for the vowels [o:] and [o], differ mainly on F2 for [i:] and [i] and mainly on F1 for [a:] and [a]. Nonuniform formant differences such as this have been noted in research on other languages (e.g. Fant, 1973).

The only other reliable effect in the F2 analysis of variance was an interaction between the position of the vowel in the word (initial vs. final) and vowel quality $[\mathrm{F}(2,164)=27.1, \mathrm{p}<0.01]$. As can be seen in figure 6, the range of F 2 values was on average reduced in word final position, paralleling the positional reduction of F1 described earlier.

The F3 frequency data were analyzed in an analogous ANOVA design, however the data proved to have more random variation than did the F1 and F2 data. Only 51% of the variance was accounted for by the ANOVA model ($\mathrm{r}^{2}=0.508$). Three effects in this analysis were reliable. The sex of the speaker had a reliable effect on $\mathrm{F} 3[\mathrm{~F}(1,164)=$ 60.19 , p<0.01]. The average F3 for female speakers was 2657 Hz while the average F3 for male speakers was 2372 Hz . Vowel quality also was significant $[\mathrm{F}(2,164)=$ 25.14, p<0.01]. The front vowels [i:] and [i] had a higher average F3 (2691 Hz) than did the low vowels [a:] and [a] (2466 Hz) and the back vowels [$\mathrm{o}:]$ and [o (2386 Hz). These two effects ($\mathbf{s e x}$ X quality) interacted with each other $[\mathrm{F}(2,164)=17.23$, $\mathrm{p}<0.01]$. Inspection of the data suggests that this was primarily due to a large difference between the measured values of F3 for male and female speakers for [i:] and [i] (male = 2397 Hz , female $=2984 \mathrm{~Hz}$). The average female F3 values for the other vowels were much lower than this (about 2500 Hz) and we suspect that the F2 and F3 frequencies in the front vowels may have been very similar to each other, with the result that the F 4 was measured as F3 in some cases.

Additional observations

In this section we will present acoustic vowel formant data regarding consonantvowel interactions in the Creek short / a / and data on the Creek diphthongs. The analysis here is less systematic than the analysis in the previous section in that we do not explore the statistical sources of variation in the formant data.

Variation in Short/a/

In addition to the forms examined in the previous section, we recorded three words which allowed us to explore some consonantal influences on the phonetic realization of short /a/. These were /lácci/ branch, /láksa/ hoof, and /lá:ksa/liar. We measured the first and second formants in all of the /a/ vowels in these words (and the /a:/ in /lá:ksa) and we also took measurements from the final vowel of /atá:pa/ wooden paddle. The formant measurements reported in this section were made in the same way that the earlier measurements were made.

Figure 7 shows average F1 and F2 for the short and long low vowels in this data set. The range of variation which can be seen in this figure runs from the quite centralized variant in /lácci/ to the much lower and backer long/a:/s in /lá:ksa/ and /a:tamí/. Looking at just the long vowels (the points shaded gray in figure 7) we find that /a:/ after palatal /c/ is higher than the others (lower F1) and /a:/ in /lá:ksa/ is backer than the others (lower F2). This variation seems to reflect a constraint on tongue-body position imposed by the neighboring consonants. A high tongue body position is required by the palato-alveolar consonant /c/ and a back tongue body position is required by the velar consonant $/ \mathrm{k} /$.

Figure 7. Average formant values for low vowels in various consonant contexts. Formant values taken from distinctively long vowels are shaded gray and formant values taken from distinctively short vowels are shaded black. The vowel which was measured is underlined in the label for each point. These values are averages over all eight speakers in this study.

The realization of short /a/ (the black points in figure 7) also seems to be affected by the tongue body of neighboring consonants. Short/a/ is backer preceding /k/ and is fronted preceding $/ \mathrm{cc} /$ and $/ \mathrm{t} /$. Final short $/ \mathrm{a} /$ following the coronals $/ \mathrm{s} /$ and $/ \mathrm{c} /$ fall between these extremes. The formant frequencies of the final vowel in /atá:pa/indicate that this vowel is pronounced with the tongue relatively low and back and could be taken to suggest that the $/ \mathrm{a} /$ preceding $/ \mathrm{k} /$ is closer to the default or preferred tongue position for /a/.

The pattern of consonant vowel interactions that we see in these measurements is reasonable given the tongue positions of the neighboring consonants. Also, the effects which we observe here may be influenced by vowel-to-vowel coarticulation effects (Öhman, 1966; Choi \& Keating, 1991) - a factor which was not controlled in the present word list. Still, the combination of lower F1 and higher F2 in the /a/ in /lácci/ suggest to us that it would not be incorrect to transcribe this vowel phonetically as ['].

Diphthongs

Among the words which we recorded were three designed to illustrate the diphthongs of Creek - /oy/, /aw/, and /ey/. These words were /óywa/ water, /láwki:/ deep and /lêykeys/ I'm sitting down (we measured /ey/ in the first syllable). Figure 8 shows average formant trajectories of these diphthongs with the average vowel formants of the monophthongal vowels and the /a/ of /lácci/. For comparison, the average F1-F2 trajectory of /o:/ is also shown in figure 8.

Figure 8. Time-normalized average formant trajectories of the Creek diphthongs /oy/, /aw/ and /ey/. The points in each trajectory were taken at intervals of $1 / 10$ of the diphthong duration (over the middle 80% of the vowel) and the arrows indicate the direction of the trajectory from the beginning to the end of the diphthong. Average vowel formants from the preceeding section are replotted here for reference and ['] indicates the average formant values of /a/ in /lácci/. To compare formant movements during diphthongs and formant movements during a monophthong, the average F1-F2 trajectory of the vowel /o:/ is also shown in this figure.

The formant trajectories in figure 8 were produced using a different speech analysis package (Waves+, Entropic Research Laboratory) from the one used for the vowel steady-state measurements. The words were digitized at 16 bits, 16 kHz (with an
appropriate digital anti-aliasing filter) and the diphthong portions of the words were labeled by reference to acoustic waveforms and time-aligned digital spectrograms. Formant trajectories during these portions of the acoustic waveforms were then calculated by autocorrelation LPC analysis (down-sampled frequency: 10 kHz ; window size: 0.049 sec.; preemphasis: 0.7 ; LPC order: 12 ; step-size: 0.01 sec) and then hand-corrected with the formant trajectories overlaid on digital spectrograms. The formant trajectories were then time normalized to ten equally spaced points through the diphthong and the middle eight of the average F1/F2 estimates are shown in figure 8 - disregarding the edges of the trajectories which were most affected by the neighboring consonants.

The diphthong formant trajectories in figure 8 illustrate that in each of the diphthongs there is a substantial amount of formant movement as would be expected from their transcriptions. It is interesting that /ey/ and /aw/ start at a similar F1 value both rather mid compared to the F1 level reached in /a/. To our ears an accurate phonetic transcription of /aw/ should start at [ø] rather than [A]. Note also that the off-glide of /oy/ does not reach the area of the acoustic vowel chart for $/ \mathrm{i} /$. We suspect that this will not prove to be a consistent property of /oy/ but rather is caused by coarticulation with the following /w/ in /óywa/. We also note that one of our speakers (FG) seemed to produce this vowel as a monophthongal / o // rather than the diphthong /oy/.

Conclusion

The main findings of this study of the Creek vowels are summarized in (3). We will comment here on three selected aspects of these findings as they relate to language universals and the language-specific phonetics of Creek.
\qquad
(3) Summary of the main findings of this study.
I. Vowel duration
a. Long vowels are on average about 1.8 times as long as short vowels.
b. Vowels in final position are longer than vowels in initial position.
c. The difference between long and short vowels is greater in final syllables than in initial syllables.
II. The Acoustic Vowel Space
a. In this three vowel system, the back vowel /o/ has a higher F1 (i.e. is more mid) than the front vowel $/ \mathrm{i} /$.
b. Distinctively short vowels are somewhat centralized relative to distinctively long vowels.
c. Vowels in final syllables are centralized relative to vowels in initial syllables despite the fact that vowels in final syllables are longer.
III. Gender differences
a. The duration distinction between long and short vowels is greater in women's speech than in men's speech.
b. Vowel formants in women's speech are generally higher in frequency than they are in men's speech.
c. The differences between women's and men's acoustic vowel spaces were nonuniform.

IV. Additional observations

a. The formant values of / $\mathrm{a} /$ are effected by the tongue body position of neighboring consonants.
b. The rising diphthongs /ey/ and /aw/ start from a mid to low-mid vowel height.

Final lengthening

We noted earlier that the position of the vowel in a word had a reliable impact on the vowel's duration. Vowels in word final position were longer than vowels in word initial position. Because the recorded utterances in this study were isolated words, word initial and final positions were also utterance initial and final (though final lengthening may occur at word endings even when they are not utterance final, Lehiste, 1972). As noted briefly above, several researchers have found that vowels in utterance final position are longer, all other things being equal, than vowels in non-final position. This 'final lengthening' phenomenon is very common cross-linguistically. The literature on final lengthening in English is quite extensive and we will not review it here (see Klatt, 1976; and Edwards, Beckman \& Fletcher, 1991 for reviews). In addition, final lengthening has been found in acoustic-phonetic studies of a wide variety of languages as indicated in (4).
(4) Languages in which final lengthening has been found. References to relevant acoustic-phonetic studies are given for each language.

Swedish (Lindblom, Lyberg \& Holmgren, 1981)

Dutch (Hofhuis, Gussenhoven \& Rietveld, 1995)
German (Delattre, 1966)
Spanish (Delattre, 1966; Hutchinson, 1973)
French (Delattre, 1966; Fletcher, 1991; Fletcher \& Vatikiotis-Bateson, 1991)
Italian (D'Imperio \& GiliFavela, 1998)
Russian (Zlatoustova, 1954)
Czech (Dankovica, 1997)
Finnish (Lehtonen, 1974)
Hungarian (Fónagy \& Magdics, 1960)
Mandarin (Shen, 1992)
Japanese (Kaiki, Takeda, \& Sagisaka, 1990)
Hebrew (Berkovits, 1994)
Muskogee Creek (this study)

In addition to the languages listed in (4) final lengthening has been found in musical performance (Carlson, Friberg, Frydén, Granström \& Sundberg, 1987), in infant babbling (Vihman, 1996, pp. 189ff), and in bird song and insect chirps (Cooper, 1976). Nickerson, Stevens, Boothroyd \& Rollins (1974) also found that final lengthening does not occur in speech produced by the deaf. These results lead to the speculation that this phonetic effect has some general cause which may not be particular to language - perhaps in motor performance or planning (Sternberg, Wright, Knoll \& Monsell, 1980). However, in the few comparative studies which have been conducted it has been found that languages differ in the amount of final lengthening they show (Delattre, 1966; Hallé, Boysson-Bardies \& Vihman, 1991). For example, Delattre (1966) found that the ratio of final syllable to non-final syllable durations was 1.53 for English, 1.50 for German, 1.17 for Spanish and 1.78 for French. ${ }^{5}$ We can here note that this ratio for Creek vowels was 1.35 - that is, the Creek final vowels were about one and one/third longer than the initial vowels. Of course, such language comparisons are confounded with any number of possible language-specific differences (in e.g. vowel quality or phonotactics, not to mention possible differences in the performances of the groups of speakers) which make such comparisons problematic. Nonetheless, the magnitudes of the cross-linguistic differences which have been observed suggest that it is

[^3]reasonable to assume that whatever the general causes of final lengthening may turn out to be, these motivating factors are implemented differently in different languages.

Short vowel centralization

Figure 4 showed that, in Creek, the distinctively short vowels are somewhat centralized relative to the distinctively long vowels. In connection with that figure we noted that Lehiste (1970) reported that this had been found in a number of languages. In a survey of the literature we have found that short vowel centralization is indeed very common, but perhaps not universal (5). As indicated in (5b) some studies have found no differences between the formant values of long and short vowels. Behne, Moxness \& Nyland (1996) noted in their study of Norwegian that though the differences between long and short vowels rarely reached statistical significance the short vowels tended to be somewhat centralized (this may also be the case in the Fischer-Jørgensen, 1972 study). Gordon (1996) reports very briefly on the vowels of Hupa and notes some tendency for centralization of short [a] but not [o] in Hupa, and describes the long and short front vowels as [l] and [e:] though no duration data, or word list are given. Apparently, short vowel centralization is not as uniformly present cross-linguistically as final lengthening.
(5) Results of a survey of the literature on short vowel centralization. These studies reported vowel formant measurements in 'quantity' languages where the primary distinction between long and short vowels is vowel duration and the long short pairs are phonetically transcribed as having the same vowel quality.
(a) Quantity languages in which short vowels are more central than long vowels.

Serbo-Croatian (Lehiste \& Ivic, 1986)
Czech (Straka, 1959)
Hungarian (Tarnóczy, 1964)
Cairo Arabic (Norlin, 1984)
Scottish Gaelic (Ladefoged, Ladefoged, Turk, Hind, \& Skilton, 1997)
Aleut (Cho, Taff, Dirks, \& Ladefoged, 1997)
Navajo (McDonough, Ladefoged \& George, 1993;
McDonough \& Austin-Garrison, 1994)
Toda (Shalev, Ladefoged \& Bhaskararao, 1993)
Cantonese (Lee, 1983)
Thai (Abramson \& Ren, 1990)

Vayra \& Fowler (1992) reported that speaking effort declines over prosodic phrases in Italian. In their study they found an effect of 'supralaryngeal declination' or 'general weakening' from early to late in utterances. They measured this effect in the fundamental frequency of voicing (F0), duration, amplitude, formant frequencies, and jaw movement, and along with declination of F0 and amplitude they observed progressive centralization of the vowels $/ \mathrm{i} /$, /a/, and $/ \mathrm{u} /$. Two very interesting findings of their study were (1) evidence of supralaryngeal declination was found for words spoken in isolation but not in words spoken medially in a carrier phrase, and (2) supralaryngeal declination was not perfectly correlated with F0 and/or amplitude declination. Vayra \& Fowler interpret the first of these findings as indicating that supralaryngeal declination is a phrase-level effect rather than a property associated with each word within a phrase. The fact that the magnitude of vowel centralization is not perfectly correlated with voice source measures such as F0 or amplitude indicates some de-coupling of these effects though Vayra \& Fowler speculate that 'general weakening' may be a general property of articulatory systems.

Krakow, Bell-Berti, \& Wang (1995, see also Krakow, 1993) also report
prosodic structure regardless of the gestural content at the margins of prosodic units. And though our use of the term 'positional' in 'positional reduction' is more restrictive than the common meaning of this term in the phonological literature on 'positional neutralization' (see Steriade, 1995) - we are here only concerned with positions defined in terms of the sequential ordering of syllables in a word rather than positions defined by stress or morphological categories - it is interesting nonetheless that there are cases of phonological vowel neutralization or failure of contrast which seem to be conditioned by the sequential position of the vowel. For example, Hume (1994) notes that final vowels neutralize in Maltese. Steriade (1995) notes that vowels in Ancient Greek contrasted for aspiration only in initial position, and that Vogul, Bashkir and Yokuts vowels contrast for lip rounding only in initial position. Beckman (1997) notes that Shona vowels can be contrastively mid only in root initial position (see other possible examples on p. 6 of her article). Odden (pc) notes that Zulu has a larger inventory of contrastive vowels in initial position than elsewhere, that mid vowels do not appear in final syllables in Shpogolu, that ["] is prohibited word finally in Korean, Tigrinya and Tigre, and ['] is prohibited word finally in Moroccan Arabic. These cases suggest that positional reduction may sometimes be phonologized as positional neutralization. However, as with the other 'universal' phonetic tendencies seen in Creek vowel reduction, it seems likely that languages will differ in the phonetic realization of positional reduction.

Acknowledgments

This research was partially funded by the National Science Foundation (SBR-9809819). The phonetics/phonology reading group at Ohio State offered many useful comments on an earlier version of this paper, and Mary Beckman provided further comments on a penultimate version.

References

Gesture, Segment and Prosody. Edited by G.J. Docherty \& R.D. Ladd. Cambridge: Cambridge University Press. pp. 68-89.
Behne, D., Moxness, B. \& Nyland, A. (1996) Acoustic-phonetic evidence of vowel quantity and quality in Norwegian. STL-QPSR 1996/2, 13-16.

Berkovits, R. (1994) Durational effects in final lengthening, gapping, and contrastive stress. Language and Speech 37, 237-50.
Bladon, R.A.W., Henton, C.G. \& Pickering, J.B. (1984) Towards and auditory theory of speaker normalization. Language and Communication 4, 59-69.
Buckley, E. (1998) Iambic lengthening and final vowels. International Journal of American Linguistics 64, 179-223.
Byrd, D. (1992) Sex, dialects, and reduction. Proceedings ICSLP 92: 1992 International Conference on Spoken Language Processing, vol. 1, 827-830.

Byrd, D. (1996) Influences on articulatory timing in consonant sequences. J Phon. 24, 209-44.

Carlson, R., Friberg, A., Frydén, L., Granström, B. \& Sundberg, J. (1987) Speech and music performance - Parallels and contrasts. STL-QPSR 4/1987, 7-23.
Cho, T., Taff, A., Dirks, M., \& Ladefoged, P. (1997) Some phonetic structures of Aleut. UCLA Working Papers in Phonetics 95, 68-90.
Choi, J.D. \& Keating, P. (1991) Vowel-to-vowel coarticulation in three Slavic languages. UCLA Working Papers in Phonetics 78, 78-86.

Cooper, W.E. (1976) Syntactic control of speech timing. Ph.D. Dissertation, Psychology, MIT.
Dankovicova, (1997) The domain of articulation rate variation in Czech. Journal of Phonetics 25, 287-312.

D'Imperio, M. \& GiliFavela, B. (1998) Laboratory Phonology paper.
Delattre, P. (1966) A comparison of syllable length conditioning among languages. International Review of Applied Linguistics 4, 183-198.
Edwards, J.; Beckman, M.E. \& Fletcher, J. (1991) The articulatory kinematics of final lengthening. J. Acoust. Soc. Am., 89, 369-82.
Eek, A. \& Remmel, M. (1974) Context, contacts and duration: Two results concerning temporal organization. Preprints of the Speech Communication Seminar, Aug. 13. 2, 187-92.

Fant, G. (1973) A note on vocal tract size factors and nonuniform F-pattern scalings. In G. Fant, Speech sounds and features. Cambridge, MA: MIT Press.

Fischer-Jørgensen, E. (1972) Formant frequencies of long and short Danish vowels. In Studies for Einar Haugen (E.S. Firchow et al., eds.), The Hague, Mouton, pp. 189-213.

Fletcher, J. (1991) Rhythm and final lengthening in French. J. Phonetics 19, 193-212. Fletcher, J. \& Vatikiotis-Bateson, E. (1991) Articulation of prosodic contrasts in French. Proceedings of the XIIth International Congress of Phonetic Sciences 1991. vol. 4, 18-21.
Fónagy, I. \& Magdics, K. (1960) Speed of utterance in phrases of different lengths. Language and Speech 3, 179-192.
Fougeron, C. \& Keating, P.A. (1997) Articulatory strengthening at edges of prosodic domains. J. Acoust. Soc. Am. 101, 3728-40.
Garnes, S. (1973) Phonetic evidence supporting a phonological analysis. J. Phonetics 1, 273-83.

Gordon, M. (1996) The phonetic structures of Hupa. UCLA Working Papers in Phonetics 93, 164-87.
Gordon, M. \& Maddieson, I. (1995) The phonetics of Ndumbea. UCLA Working Papers in Phonetics 91, 25-44.
Gordon, M., Munro, P. \& Ladefoged, P. (1997) The phonetic structures of Chickasaw. UCLA Working Papers in Phonetics 95, 41-67.
Haas, Mary R. (1940) Ablaut and its function in Muskogee. Language 16:141-50.
Haas, M. (1977a) Tonal accent in Creek. In L. M. Hyman (ed.) Studies in Stress and Accent, vol. 4. SCOPIL. Los Angeles: University of Southern California.

Haas, Mary R. (1977b) Nasals and nasalization in Creek. Proceedings of the Third Annual Meeting of the Berkeley Linguistics Society. Ed. Kenneth Whistler et al. Berkeley: Berkeley Linguistics Society, University of California, Berkeley, 194203.

Hallé, P. Boysson-Bardies, B. de, \& Vihman, M.M. (1991) Beginnings of prosodic organization - Intonation and duration patterns of disyllables produced by Japanese and French infants. Language and Speech 34, 299-318.
Herman, R., Beckman, M., \& Honda, K. (1997) Subglottal pressure and final lowering in English. Proceedings of the 4th International Conference on Spoken Language Processing, pp. 145-8.

Ho, A.T. (1976) The acoustic variation of Mandarin tones. Phonetica 33, 353-67.
Hofhuis, E., Gussenhoven, C. \& Rietveld, A. (1995) Final lengthening at prosodic boundaries in Dutch. Proceedings of the International Congress of Phonetic Sciences 1995. vol. 1, 154-7.

Hume, E.V. (1994) Front vowels, coronal consonants and their interaction in nonlinear phonology. Garland.
Hunnicut, S. (1985) Intelligibility versus redundancy - Conditions of dependency. Language and Speech 28, 45-56.

Hutchinson, S. (1973) An objective index of the English-Spanish pronunciation dimension. Masters Thesis, UT Austin.

Iivonen, A. 1974. On the relationship between the main components in the control of speech. Preprints of the Speech Communication Seminar, Aug. 1-3. 2, 163-72.
Jones, D. (1942-3) Chronemes and tonemes. Acta Linguistica 3, 1-10.
Jun, S. (1993) The phonetics and phonology of Korean prosody. Ph.D. dissertation, Ohio State University.
Kaiki, N., Takeda, K, \& Sagisaka, Y. (1990) Statistical analysis for segmental duration rules in Japanese speech synthesis. In Proceedings of the 1990 International Conference on Spoken Language Processing, vol. 1, 17-20.
Keating, P.A. \& Huffman, M.K. (1984) Vowel variation in Japanese. Phonetica 41, 191-207.
Klatt, D.H. (1976) Linguistic uses of segmental duration in English: Acoustics and perceptual evidence. J. Acoust. Soc. Am. 59, 1208-21.
Krakow, R.A. (1993) Nonsegmental influences on velum movement patterns: Syllables, sentences, stress, and speaking rate. In M.K. Huffman \& R.A. Krakow (eds.) Nasals, nasalization, and the velum. (Phonetics \& Phonology V) New York: Academic Press, 87-118.

Krakow, R.A., Bell-Berti, F. \& Wang, Q.E. (1995) Supralaryngeal declination: Evidence from the velum. In F. Bell-Berti \& L.J. Raphael (eds.) Producing Speech: Contemporary Issues for Katherine Safford Harris. NY: American Institute of Physics Press, pp. 333-53.
Ladefoged, P., Ladefoged, J., Turk, A., Hind, K. \& Skilton, St.J. (1997) Phonetic structures of Gaelic. UCLA Working Papers in Phonetics 95, 114-153.
Lee, T. (1983) The vowel system in two varieties of Cantonese. UCLA Working Papers in Phonetics 57, 97-114.

Lehiste, I. (1970) Suprasegmentals. Cambridge, MA: MIT Press.
Lehiste, I. (1972) The timing of utterances and linguistic boundaries. J. Acoust. Soc. Am. 51, 2018-24.
Lehiste, I. \& Ivi'c, P. (1986) Word and Sentence Prosody in Serbo-Croatian. Cambridge, MA: MIT Press.

Lehtonen, J. (1970) Aspects of quantity in Standard Finnish. Studia Philologica Jyväskyläensia 6.
Lieberman, P. (1963) Some effects of semantic and grammatical context on the production and perception of speech. Language \& Speech 6, 172-87.
Lindau-Webb, M. (1985) Hausa vowels and diphthongs. Studies in African Linguistics 16, 161-82.
Lindblom, B. (1963) Spectrographic study of vowel reduction. J. Acoust. Soc. Am. 35, 1773-81.
Lindblom, B. (1968) On the production and recognition of vowels. Summary of Doct. thesis, University of Lund.
Lindblom, B. (1983) Economy of speech gestures. In P.F. MacNeilage (ed.) The Production of Speech. New York: Springer-Verlag.
Lindblom, B. (1990) Explaining phonetic variation: A sketch of the H\&H theory. In W.J. Hardcastle \& A. Marchal (eds.) Speech Production and Speech Modeling. Kluwer Academic. (pp. 403-39).
Lindblom, B., Lyberg, B. \& Holmgren, K. (1981) Durational patterns of Swedish phonology: Do they reflect short-term motor memory processes? Bloomington: IN: Indiana University Linguistics Club.
Maddieson, I. \& Anderson, V.B. (1994) Some phonetic characteristics of Iaai. Proceedings of the International Congress of Phonetic Sciences. vol. 3, 540-3.

Maddieson, I., Spajic, S., Sands, B. \& Ladefoged, P. (1993) Phonetic structures of Dahalo. Afrikanistische Arbeitspapiere 36, 5-53.
Malmberg, B. (1944) Die-Quantität als phonetisch-phonologischer Begriff. Lunds Universitets ${ }^{\circ}$ Arsskrift N.F. Part 1. 41:2.
Manuel, S.Y. (1990) The role of contrast in limiting vowel-to-vowel coarticulation in different languages. Journal of the Acoustical Society of America 88, 1286-98.
Manuel, S.Y. \& Krakow, R.A. (1984) Universal and language particular aspects of vowel-to-vowel coarticulation. Haskins Laboratories Status Report on Speech Research SR-77/78, 69-78.
Marslen-Wilson, W. \& Tyler, L. (1980) The temporal structure of spoken language understanding. Cognition, 8, 1-71.
McDonough, J. \& Austin-Garrison, M. (1994) Vowel enhancement and dispersion in the vowel space of Western Navajo: a study of traditional Navajo speakers. UCLA Working Papers in Phonetics 87, 93-104.
McDonough, J., Ladefoged, P. \& George, H. (1993) Navajo vowels and phonetic universal tendencies. UCLA Working Papers in Phonetics 84, 143-150.

Millenkovic, P. \& Read, C. (1992) CSpeech Version 4 User's Manual. Madison, Wisconsin.
Nakatani, L.H., O’Connor, K.D. \& Aston, C.H. (1981) Prosodic aspects of American English speech rhythm. Phonetica 38, 84-106

Nickerson, R.S., Stevens, K.N., Boothroyd, A. \& Rollins, A. (1974) Some observations on timing in the speech of deaf and hearing speakers. Bolt, Beranek \& Newman, Inc., Report no. 2905.
Nooteboom, S. (1972) Production and perception of vowel duration, A study of durational properties of vowels in Dutch. Ph.D. Dissertation. University of Utrecht.
Nord, L. (1986) Acoustic studies of vowel reduction in Swedish. STL-QPSR 1986/4, 19-36.

Norlin, K. (1984) Acoustic analysis of vowels and diphthongs in Cairo Arabic. Lund University, Department of Linguistics Working Papers 27, 185-208.
Öhman, S. (1966) Coarticulation in VCV utterances: spectrographic measurements. J. Acoust. Soc. Am. 30, 149-54.
Peterson, G.E. \& Barney, H.L. (1952) Control methods used in a study of vowels. J. Acoust. Soc. Am. 24, 175-84.
Pierrehumbert, J. \& Talkin, D. (1992) Lenition of /h/ and glottal stop. In Papers in Laboratory Phonology II: Gesture, Segment, Prosody (edited by G.J. Docherty \& D. R. Ladd), pp. 90-127.

Pullum, G.K. \& Ladusaw, W.A. (1986) Phonetic Symbol Guide. Chicago: University of Chicago Press.
Roudet, L. (1910) Eléments de Phonétique Générale. Paris: Library Universitaire.
Shalev, M., Ladefoged, P. \& Bhaskararao, P. (1993) Phonetics of Toda. UCLA Working Papers in Phonetics 84, 89-126.
Shen, S. (1992) A pilot study on the relation between temporal and syntactic structures in Mandarin. JIPA 22, 35-43.
Shipman, D.W. \& Zue, V.W. (1982) Properties of large lexicons: Implications for advanced isolated word recognition systems. ICASSP 82, 546-9.
Shryock, A., Ladefoged, P., \& Williamson, K. (1995) Phonetic structures of Defaka. UCLA Working Papers in Phonetics 91, 89-109.

Sternberg, S., Wright, C.E., Knoll, R.L., \& Monsell, S. (1980) Motor programs in rapid speech: Additional evidence. In R.A. Cole (ed.) Perception and Production of Fluent Speech. Hillsdale, NJ: Lawrence Erlbaum.

Steriade, D. (1995) Underspecification and markedness. In The Handbook of Phonological Theory. Edited by John A. Goldsmith. Oxford: Blackwell. pp. 114-174.

Straka, G. (1959) Durée et timbre vocalique. Zeitschrift für Phonetik und allgemeine Sprachwissenschaft 12, 276-300.
Tarnóczy, T. (1964) Acoustic analysis of Hungarian vowels. STL-QPSR 1964/4, 8-12.
Tarnóczy, T. (1965) Can the problem of automatic speech recognition be solved by analysis alone? Rapports du 5^{e} Congrès Internationale d'Acoustique, Liège 114, Septembre 1965. vol. 2. Liège.
Vaissière, J. (1986) Comment on Abbs' paper. In J.S. Perkell \& D.H. Klatt (eds.) Invariance and Variability in Speech Processes. Hillsdale, NJ: LEA, pp. 220-2.
Vayra, M. \& Fowler, C.A. (1992) Declination of supralaryngeal gestures in spoken Italian. Phonetica 49, 48-60.

Vihman, M.M. (1996) Phonological Development: The Origins of Language in the Child. Oxford: Blackwell Publishers.

Whiteside, S. (1996) Temporal-based acoustic-phonetic patterns in read speech: Some evidence for speaker sex differences. JIPA 26, 23-41.
Zlatoustova, L.V. (1954) Duration of vowel and consonant sounds of the Russian language. Scientific Notes of the Kazan' State Univ. imeni V.I. Ul'yanov-Lenin 114, 99-173

[^0]: ${ }^{1}$ The transcriptions are in the Americanist tradition (Pullum \& Ladusaw, 1986), which, for the transcriptions in this paper, differs from the IPA in the following: /ey/-[el], /oy/-[ol], /aw/-[aU], /c/-[tS].

[^1]: ${ }^{2}$ In particular it is important to note that the accent marks should not be interpreted as marking syllables which are longer, louder, or more prominent than the other syllables in the word. The marks are merely a convenient typographical convention to indicate the pitch pattern of a word.

[^2]: ${ }^{4}$ One reviewer suggests an additional observation. The ranges of the vowel formant frequencies (the area covered by each elipse) seem to be smaller than they could have been given Manuel \& Krakow's (1984; Manuel, 1990) claim that small vowel inventories allow large vowel variation. The formant ranges in figure 4 certainly appear to be smaller than those found for Chickasaw (Gordon, Munro \& Ladefoged, 1997) and Navajo (McDonough \& Austin-Garrison, 1994; McDonough, Ladefoged \& George, 1993) two other languages with small vowel inventories and distinctive vowel length.

[^3]: 5 In addition to this evidence of linguistic variation in final lengthening, Ho (1976) found an interesting interaction between final lengthening and duration associated with tonal distinctions in Beijing Mandarin. In some phrase final positions short tones were shorter than average while long tones were longer.

