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Speech Perception without
Speaker Normalization

An Exemplar Model

KEITH JOHNSON

8.1 INTRODUCTION

Speaker normalization is a hypothesized perceptual process in which differ-
ences between speakers are reduced prior to identification of linguistic categories.
There are a variety of conceptions of speaker normalization, all of which in one
way or another involve a mapping from a speaker-specific representation to a
relatively speaker-neutral abstraction, which is presumably an appropriate probe
to linguistic memory.

For example, in Gerstman’s (1968) range normalization, formant values are
expressed relative to the speaker’s range of produced formants. So, if a vowel has
a first formant (F1) value of 500 Hz and the speaker’s F1 in other vowels ranges
from 300 Hz to 700 Hz, the normalized value of F1 is 0.5 because 500 is half-
way between 300 and 700.

In the Joos (1948)/Potter and Steinberg (1950) approach, the formant values
of a vowel are considered relative to each other. So, if a vowel has a second
formant (F2) value of 1500 Hz and F1 of 500, one dimension of the normalized
representation is the difference between them. In Syrdal and Gopal’s (1986) and
Traunmiiller’s (1981) implementations the differences are calculated after trans-
forming the formant values to the Bark scale. J. D. Miller (1989) and Nearey
(1978, 1989) calculated the differences of the log formant values. Bladon, Henton,
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and Pickering (1984) implemented this approach by sliding auditory spectra up or
down (depending on the sex of the speaker) on the frequency scale.

What all of these models share is the basic property that the auditory repre-
sentation of the speech signal must be modified in some way prior to recognition.

Gesture recovery models (Fowler, 1986; Liberman & Mattingly, 1985) ap-
pear at first to be very different from these acoustic normalization models. Al-
though gesture recovery is principally concerned with the problem of contextual
variation in speech (the flip side of speaker variation in the lack of invariance
problem, see Perkell & Klatt, 1986), it can also be seen as a type of speaker
normalization. This is because gestures are abstract speaking intentions, not actual
articulator movements. With an understanding of gesture as a relatively speaker-
neutral abstraction, the process of gesture recovery is by definition a speaker
normalization process of the same sort as those mentioned in the preceding
paragraphs.!

In this chapter I will outline a model of speech perception that unlike these
approaches includes no speaker normalization process. The next section describes
the model in rough conceptual terms. In the third section I discuss some elabora-
tions of the basic model that address points of plausibility and implementation.
The fourth section is a description of a small working exemplar model of vowel
recognition and results of some simulations.

8.2 PERCEPTION BY EXEMPLARS

In exemplar models of perception (Estes, 1993; Hintzman, 1986; Nosofsky,
1986, 1988, 1991; Nosofsky, Kruschke, & McKinley, 1992) a perceptual category
is defined as the set of all experienced instances of the category. That is, no
abstract category prototypes are posited. The process of categorization then in-
volves comparing the to-be-categorized item with each of the remembered in-
stances of each category, and categorization is based on sums of similarity over
each category. Hintzman (1986) demonstrated that a model of this sort behaves as
if categorization is based upon category prototypes, although category abstraction
1s produced at decision time rather than during acquisition.

A pure exemplar model is obviously impossible because it is necessary to
assume that the perceiver remembers too much (Neal Johnson, personal commu-
nication, calls this the “head-filling-up problem™). This will be discussed further
in the next section, but at this point it should be mentioned that this apparent need

'I am not arguing against Fowler’s (1986) characterization of speech perception as “direct” gesture
recovery. She emphasizes that her Gibsonian brand of gesture recovery is nontranslational, in the
sense that the gestural intentions of the speaker are directly perceived by the listener (or better,
perceiver). The mechanism involved in deriving gestures from an acoustic signal, although a huge
black-box in the theory, is not at issue here. | am suggesting that recovery of linguistic intentions
from speech articulation involves some abstraction because gestural intentions vary from speaker to
speaker for the same linguistic entities (Johnson, Ladefoged, & Lindau, 1993).
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for unlimited memory is matched by the apparent availability of unlimited mem-
ory in picture recognition. Standing, Conezio, and Haber (1970) found that people
could recognize thousands of previously seen pictures with surprising accuracy
and over surprisingly long times. Goldinger (Chap. 3, this volume; 1992) also
found that implicit memory for (instances of) words is strong and long-lasting
(see also Palmeri, Goldinger, & Pisoni, 1993; Schacter & Church, in press). So,
although an exemplar model seems to need unrealistic amounts of memory, peo-
ple have a surprising ability to remember instances.

Figure 1 illustrates categorization in an exemplar model of speech perception.
In this illustration, an exemplar is an association between a set of auditory prop-
erties and a set of category labels. The auditory properties are output from the
peripheral auditory system, and the set of category labels includes any classifica-
tion that may be important to the perceiver, and which was available at the time
that the exemplar was stored—for example, the linguistic value of the exemplar,
the gender of the speaker, the name of the speaker, and so on. The association
between sound and category is indicated in the figure as an oval labeled “exem-
plar,” with lines stretching off in one direction toward a vector of auditory prop-
erties and in another direction toward a vector of category labels. The stack of
ovals stands for the set of all exemplars. Given an item to be categorized, its
auditory properties are compared with each exemplar’s auditory properties, and
the similarity between the item and each exemplar determines the activation level
of the exemplar. If the match is good, the activation level of the exemplar is high.
The sum of activations over all of the exemplars of a category is taken as evidence
that the unknown sound should be categorized as an instance of that category.
This is true for each of the types of categories, and so in this way, the model
performs speech and speaker recognition simultaneously, as do humans (Remez,
Fellowes, & Rubin, 1995).

This type of model can be implemented as a set of formulas (following
Nosofsky, 1988). Auditory similarity s, between exemplars i and J 1s calculated
by (1), where the auditory property m of exemplar j is written X,,, the Euclidian
distance between exemplar j and item i is written d;, w, is an attention weight
given to property m, and c is a sensitivity constant.

d; = [Zw,(x,, — x,,)?]" (1a)
s; = exp(—cd,) (1b)

The degree to which item i activates exemplar j in memory is calculated from
similarity using formula (2) by assuming that each exemplar has a base activation
level (N)) and optionally that Gaussian noise is added.

a; = N;s; t e (2)

Evidence for category C, given item i is then the sum of the activations of
exemplars j of C, as shown in formula 3).

El,i = Eaij’j €C, (3)
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Auditory Properties Category labels
FIGURE 1 A setof exemplars rélating auditory properties to category labels.

The weight parameters w,, allow the model to ignore variation on certain
stimulus dimensions (and hence are called attention weights). As we will see in
section 8.4, certain speaker normalization effects can be modeled with changes in
the attention weights.

The sensitivity parameter ¢ serves to limit the impact of distant exemplars.
Because the function relating distance to similarity is exponential, the impact of
distant neighbors on the calculation of total activation E can be reduced to almost
nothing. So, the similarity function provides a sort of K nearest-neighbors classi-
fication, in which only nearby neighbors are considered.

The base activation levels N; may vary as a function of some experimental
manipulations. For example, a forced-choice identification task can be simulated
by forcing the base activation levels of the available responses to be 1 and those
of all other categories to be 0. This move forces the identification response to be
one of the selected responses because the activations for the other categories are
0 (o, if ¢; is used, hover around 0).

8.2.1 Compensation for Speaker Variability in an Exemplar Model

In this model of speech perception, the auditory properties that distinguish
speakers are retained in the exemplars. The result of this is that the exemplars that
are most similar to a to-be-categorized item are those exemplars that were spoken
by the same or a similar speaker. By retaining speaker-specific information in the
long-term category representation (the set of exemplars), the model makes it
possible to categorize new items by reference to appropriate prior examples—a
subset of exemplars that resemble the to-be-recognized item on speaker-specific
dimensions.

In Johnson (1990a) I argued for an indirect model of speaker normalization
in which cues for vowel identity are evaluated relative to the perceived identity of
the speaker. The type of model that I envisioned was one in which the perceived
identity of the speaker established (or guided the selection of) a frame of reference
for the evaluation of linguistic cues (see also Nearey’s [1978] sliding template
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model of vowel perception, and Whalen and Sheffert’s [Chap. 7, this volume]
discussion of speaker model construction). The exemplar model outlined here is
an indirect model because categorization takes place by reference to items in
memory that retain speaker information. That is, the frame of reference (a model
of the speaker) is inherent in the set of exemplars, and the similarity calculation
(formula 1, above) limits the comparison to items in memory that are sufficiently
close to the to-be-categorized item.

8.2.2 Attention Weights

The model parameters w,, shrink or expand the perceptual space along each
of the auditory dimensions. These parameters are called attention weights (Nosof-
sky, 1986) because they control the degree to which the categorization process is
sensitive to particular auditory properties. For example, if a particular experimen-
tal task calls upon the listener to categorize a set of vowel stimuli (to take a
relevant example) primarily upon the basis of their first formant frequencies, it is
reasonable to expect that the listener will tune in to F1. This can be modeled by
letting the weight for F1 (or the weights for the critical bands in the F1 region) be
larger than the weights for other auditory properties.2

Of course, attention weights can be set so that speaker cues like fundamental
frequency are ignored. In vowel perception this would lead to the vowel confu-
sions that you might expect if perception depended solely on location in the F1/
F2 plane (for example). However, in modeling the behavior of listeners, I have
not found any situations in which this happens. That is, although the structure of
the exemplar model makes it possible to ignore a speaker-specific dimension like
FO by setting its weight to 0, in practice this does not happen.

8.2.3 Base Activation Level N,

Ganong (1980) observed that phonetic categorization is influenced by word
frequency. The effect that he observed is reminiscent of the perceptual magnet
effect (Kuhl, 1991) in that high-frequency words tended to attract listener’s re-
sponses.? One way to account for this behavior (if the raw number of exemplars
does not; see McQueen, 1991) is to assume that the activation parameters N, tend

*I am being purposefully vague about several issues in this chapter. One of them is the definition of
auditory property. At some points I consider formant values to be auditory properties and at other
points I consider auditory properties to be critical-band activation levels, or even vector quantized
spectral templates. In the simulations presented in section 8.4 I use measured formants, FO, and
durations, but in earlier work (Johnson, 1990b) T used auditory-based spectra. For vowels, these seem
to be interchangeable (Fant, 1960), but a more general model of speech perception will probably
have to be based on spectra.

*Thinking about similarities between the Ganong effect and the perceptual magnet effect suggests an
exemplar-based explanation of the perceptual magnet effect (assuming, as argued in the text, that
word-frequency effects are related to exemplar coding). This topic is beyond the scope of this chapter.
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to be larger for higher frequency words. Nosofsky et al. (1992) proposed that base
activation level is subject to a time function such that recent exemplars have
higher base activation than do past exemplars. On average then, more frequent
words will have a greater number of recent exemplars and therefore higher aggre-
gate base activation levels.

The base activation level parameter may also be a route for allowing higher
level processing to have an influence on speech perception. If syntactic or seman-
tic context leads to the prediction that a particular set of words is likely to occur,
the base activation levels of the exemplars of these words could be increased.
Manipulation of base activation in this way changes the recognition process di-
rectly, as opposed to the use of a language model as a filter on the output of
recognition, as is done in automatic speech recognition. Whether this is a desirable
property is open to debate (see the discussion in Norris, 1994).

In some of the simulations described below, I assumed that in the forced-
choice paradigm listeners increase the base activations of exemplars of the per-
missible responses and decrease (to zero) the base activations of all other
exemplars. Obviously, real listeners do not absolutely rule out impermissible al-
ternatives, but this simplification made the models easier to implement.

Base activation level may also be manipulated to simulate a couple of types
of context effects that occur in speech perception experiments. Contrast effects
observed in selective adaptation and anchoring paradigms that seem to arise from
“modifications of internal perceptual referents” (Fox, 1985, p. 1552) can be mod-
eled as changes in base activation level. Fox (1985) proposed that contrast effects
occur after speaker normalization. In the model proposed here, which has no
speaker normalization stage, the contrast can be implemented as a base-level
adjustment such that the base level for all exemplars of the contrasting category
is increased by some amount.

Johnson (1991) found a type of speaker continuity effect, where it seemed
that listeners expected the voice of the speaker to remain constant across time
(and a silent gap of 4 s broke this expectation). To model this effect we can adjust
the base activation level for all exemplars of a particular speaker’s voice, or the
set of similar-sounding speakers, so that future categorizations are more heavily
influenced by exemplars from the same speaker. This type of speaker continuity
mechanism might explain listeners’ decreased word-recognition speed and accu-
racy for multiple-speaker listening as opposed to single-speaker listening (Mul-
lennix, Pisoni, & Martin, 1989).

8.3 ELABORATIONS AND IMPLEMENTATION

This section explores some elaborations that must be considered if the basic
exemplar model discussed in the previous section is to be taken seriously as a
model of human speech perception. In addition, I discuss some issues that must
be addressed if the model is to be implemented and tested. This section is more
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FIGURE 2 an auditory buffer for use in an exemplar model. A quantized auditory spectrum is
represented in the vertical dimension with each row representing a frequency region, and time is
represented on the horizontal dimension with time passing from right to left.

speculative than the last because I have not yet put together a working implemen-
tation of the elaborated model.

8.3.1 Incorporating Time in an Exemplar Model

Previous research on exemplar models has focused on the perception of sim-
ple novel visual figures. Consequently, perception of time-varying stimuli has not
been considered. One way to incorporate time into an exemplar model is to add a
buffer that retains auditory parameters over some interval of time. The model
sketched in Figure 1 had a vector of auditory parameters representing the output
of the auditory system at one instant in time. This can be extended by incorporat-
ing a short-term memory for auditory parameters (Figure 2).

The matrix in Figure 2 is a buffer for incoming speech signals, each column
stands for a brief interval of time (on the order of 10 ms), and each row stands for
an auditory property. As time passes, the columns shift to the left with the “now”
column being filled with the newest set of auditory properties and the columns to
the left constituting a veridical short-term memory of the signal (Crowder, 1981).
Figure 1 showed connections between each exemplar and only four auditory
properties. In this more complicated model each cell in the matrix in Figure 2 is
connected to each exemplar.

Another complicating factor is that the similarity between the incoming ma-
trix and the auditory patterns stored with each exemplar must be evaluated each
time a new column is added to the matrix. This is obviously not an efficient way
to process a speech signal in a serial computing architecture, in which similarity
between exemplars and the incoming signal must be evaluated one after the other.
But, this point is less problematic if similarity is calculated in parallel, assuming
that each exemplar is an independent agent. Still, by including time in the model,

REes
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with its consequent need for continuous evaluation of the matrix, we introduce a
locus for implementing various approaches for temporal selective attention and
segmentation strategies.

For example, a general segmentation routine could be implemented by a
surprise detector. In this approach, the matrix is evaluated if the auditory vector
added to the “now” column is quite different from the immediately preceding
column. This is analogous to saying that attention is drawn to the matrix when
something happens there. So, sudden acoustic changes such as those that occur at
segment boundaries would trigger a recognition attempt.

Word-based segmentation is also possible. In this approach, if the contents
of the matrix have been identified as a word, the system will delay further evalu-
ations of the matrix until the “now” column has scrolled some distance into
the past.

Rhythmic attention to the matrix (e.g., stress-based or syllable-based segmen-
tation, Cutler & Norris, 1988) involves probing the matrix cyclically at a rate
determined by the intervals between previous recognitions, or previous signal
events. Note here that stress and syllable cycles correspond to intervals that might
be established by the surprise detector, because stress locations and syllable
boundaries are associated with signal events. So the choice of a language-specific
segmentation strategy might be guided by attention to certain types of auditory
changes.

8.3.2 The Head-Filling-Up Problem

The head-filling-up problem is one of the main weaknesses of an exemplar
model of speech perception. It is simply not possible that each experienced audi-
tory pattern is stored at a separate location in the brain. The patterns are too
complicated (as suggested by the elaboration in Figure 2), and there are too many
of them. So, in order to seriously consider an exemplar model we have to have a
way to implement it without storing each exemplar.

Kruschke’s (1992) connectionist exemplar model is appealing in this regard
because a covering map takes the place of exemplars. Figure 3 illustrates a coy-
ering map representing a space of exemplars given two auditory properties and
two categories (note that only a few of the many interconnections are illustrated).
Each location in the map corresponds to a vector of possible auditory properties.
Attention weights, as before, govern the mapping from each property to the map
(one weight for each property), and association weights govern the mapping from
locations in the map to category nodes (one weight between each location in the
map and each category). In a richer representation with more auditory properties
and categories, the covering map and hence the number of association weights
becomes quite large, but unlike a literal exemplar model its size is bounded.

In Kruschke’s approach, the weights, both attention weights and association
weights, are learned (by a gradient descent learning procedure) by feedback on
correct categorization. Consequently, exemplars are encoded in the model as
weight modifications rather than through explicit storage.
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FIGURE3 a covering map exemplar model of perception. Each input auditory property is con-

nected to each location in the map of possible exemplars, and each location in the map is connected
to a set of category nodes.

Auditory properties

The covering map as illustrated is essentially a quantized perceptual space.
Given the fact that there are limits on the perceivability of incremental changes
in duration, pitch, and timbre (just noticeable differences), this assumption
seems reasonable. For the sake of a working implementation we may want to
take this a step further and use vector quantization (Linde, Buzo, & Gray,
1980).

8.3.3 The Production-Perception Link

Some speech experiences are of one’s own speech, which presumably code
not only auditory properties and categorical labels, but also articulatory proper-
ties. Therefore, an exemplar model can, in principle, also be used to give an
account of the production—perception link.* This observation leads to some
predictions.

In discussing the perception of speech produced by a glossectomee (a person
whose tongue was surgically removed), Fowler (1990) invokes the notion gestural
mirage. She says,

For the deviant speech of the glossectomized speaker to be perceived as speech at all, the
speaker must create acoustic signals that mimic those produced by normal articulations.
When he succeeds, listeners hear the normal vocal-tract actions not the compensatory
articulations that, in fact, occurred. That is, they hear a mirage. (p. 533)

“McGowan (Chap. 11, this volume) discusses some ways of characterizing the articulatory informa-
tion that might be included in these exemplars.
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In extreme cases, such as speech produced without a tongue, or speech pro-
duced by a mynah bird, articulatory impressions (the movements a listener would
make to produce similar-sounding speech) are obviously imaginary. However, less
extreme examples of gestural perception, such as speech produced by people who
have slightly different articulatory strategies (Johnson et al., 1993), are no less
imaginary. If, as I am suggesting here, the production—perception link is based on
one’s own speech, then the gestural knowledge derived or generated while listen-
ing to others is based on ego exemplars. Gestural mirages are the norm, not the
exception.

Consider the perception of a different sort of intention in speech communi-
cation. When a person speaks he or she clearly intends to convey some meaning
to the listener, but just as clearly we often understand each other only approxi-
mately. Our differing experiences of the conventions that link language to the
world give us all somewhat different frames of reference for interpreting the
utterances we hear. Using my own semantic—pragmatic frame of reference I con-
struct mirages that encode “what I think you said.”

An exemplar model that encodes the production—perception link in ego ex-
emplars (but not exclusively so; McGurk & McDonald, 1976) provides a basis
for gestural perception and for the imitation of another’s speech, but these gestural
mirages are not central to perception.

8.4 SOME MODELING RESULTS

This section returns to the unelaborated model set out in section 8.2, fills in
some details, and reports the results of some simulations. These results demon-
strate in a general way some of the properties discussed in section 8.2, as well as
the use of an exemplar model to account for the presentation type effect reported
in Johnson (1990b).

8.4.1 A Corpus of Vowel Exemplars

Thirty-nine native speakers of English (14 men and 25 women) read the
words aid, awed, had, head, heed, hid, hood, hud, odd, owed, and who'd five
times each (in random order). Five acoustic parameters were derived from each
token—fundamental frequency, first, second, and third formant, and vowel dura-
tion. The frequency measurements were taken from the midpoint of the vowel.

These exemplars are obviously much simpler than the time-varying auditory
spectra envisioned in section 3, but previous research has shown that these acous-
tic dimensions correlate well with perceptual dimensions for vowels. For example,
multidimensional scaling (MDS) studies (Fox, 1981 Shepard, 1972; Singh &
Woods, 1970; Terbeek, 1977) have found that vowel formant values and FO cor-
relate with derived dimensions of the perceptual vowel space. Strange, Jenkins,

o bl
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TABLE | Model Parameters and Errors for Simulations of Vowel
Identification, Sex Identification, and for Fits to the Blocked and Mixed
Conditions in Johnson ( 1990b)e

Vowel identification Sex identification Blocked Mixed

c 0.105 0.36 0.137 0.255
Wi 0.25 0.95 0.2 0.714
Wi, 0.25 0.048 0.226 0.012
W, 0.12 0.0 0.039 0.041
Wes 0.27 0.003 0415 0.17

W 0.1 0.0 0.12 0.078
Error 20% 0.02% 0.047 0.069

“Error values for the identification simulations are given in percent incorrectly identified, and error
values for the experiment simulations are given in root mean square deviation from the actual results.

and Johnson (1983; see also Strange, 1989) also found that vowel duration is used
by English listeners to disambiguate spectrally similar vowels.

In addition to these acoustic properties, each exemplar was encoded with
categorical labels indicating (a) the intended word, (b) the sex of the speaker, and
(c) the identity of the speaker.

8.4.2 Vowel Identification

Each token in this corpus of exemplars was in turn removed from the corpus
and treated as an unknown token to be identified using the remaining exemplars
in formulas (1-3) (section 8.2). Base activation levels for all of the exemplars was
fixed at 1, and no random noise ¢; was added in the calculation of similarity.

The attention weights (w,,, w,,, Wr2, Wes, Wg,,) and the sensitivity parameter
¢ were adjusted using a simulated annealing algorithm (Masters, 1995) to maxi-
mize percent correct vowel identification.

Overall percent correct achieved by the best-fitting model was 80%. The
model parameters are shown in Table I. The values of the attention weights indi-
cate that each of the five dimensions was important for this exemplar-based vowel
classification task.® This level of vowel identification accuracy is comparable to
human listeners’ ability to identify vowels synthesized from midpoint formant
values (Lehiste & Meltzer, 1973; Ryalls & Lieberman, 1982).

The vowel confusion matrix produced by the model is shown in Table II.
This matrix is significantly correlated (r = 0.988), with the confusion matrix re-
ported by Peterson and Barney (1952) for listeners’ identifications of naturally

*One caution about interpreting these weights. They scale differences in Hz (or ms in the case of
vowel duration) and variance on the dimensions is correlated with the mean. So, although the weights
for FO and F1 are the same, the contribution of Fl to vowel identification is larger because the
variance of F1 is larger.
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TABLE Il Vowel Confusion Matrix Produced by an Exemplar Model of
Vowel Perception«

Response

aid awed had head heed hid hood hud odd owed who’d

aid 85.34 52 .00 00 1099 209 52 .00 .00 52 .00
awed .52 68.06 52 .00 .00 .00 00 157 2251 681 00

had 00 106 8466 952 .00 .00 53 LO6  1.06 .53 1.59
head .53 00 3.68 83.16 00 789 211 1.58 .53 .53 .00
heed 11.52 .00 .00 00 85.86 00 1.05 .00 .00 .00 1.5
hid 4.40 .00 S5 659 275 84.07 .55 .00 .00 .55 55
hood .00 .00 .00 .00 53 00 7842 842 53 10.00 2.11
hud 530 214 428 267 .53 53 1176 74.87 53 160 53
odd .00 2593  1.59 .53 .00 .00 53 159 6825 159 00

owed 00 579 .00 .00 .00 00 947 105 .00 78.95 4.74
who’d 52 .00 .00 .00 52 156 521 1.04 00 313 88.02

“The speaker’s intended vowel is listed down the left column and the model’s identification response
is listed in the first row. Percent correct identifications averaged across speakers are printed in
boldface and confusions are indicated in the off-diagonals.

produced vowels (in a list comparable to the one used in this study), and the
confusions—that is, the matrix without the diagonal—are also significantly cor-
related (r = 0.716) with the confusions in Peterson and Barney’s study. This
indicates that the acoustic measures used in this study are adequate for further
model studies of vowel perception (i.e., without the elaborations mentioned in
section 8.3). In addition, these results show that it is possible, using an exemplar
model, to simulate human vowel perception without normalization.

8.4.3 Sex Identification

In a simulation that was analogous to the one just reported, the model was
tuned to maximize correct sex identification. By giving greatest attention to FO
(the best-fitting parameters are shown in Table D), the model was able to achieve
99.8% correct sex identification for these tokens. But even with the model para-
meters that resulted in the best vowel identification (previous section) the sex of
the speaker was correctly identified 96% of the time.

8.4.4 Twiddling Some Knobs

Formant values for the hood—hud continua that were used in Johnson (1990b)
are shown in Table III. The vowel portions of those stimuli were 190-ms long and
two continua were synthesized, one with FQ at 120 Hz and one with FO at 240 Hz.
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TABLE Il Formant Values of the Hood-Hud Continuum Used in Johnson
(1990b) and the Simulations Reported in this Chapter

Token # 1 o2 3 4 5 6 7

F1 474 491 509 526 543 561 578
F2 1111 1124 1137 1150 1163 1176 1189
F3 2416 2424 2432 2440 2448 2456 2464

The vowel identification model described in section 8.4.2 (the set of model
parameters that gave the best vowel identification) was used to identify these
tokens in a forced-choice experiment. As mentioned earlier, I assumed that in a
forced-choice experiment only exemplars of the permitted categories are used to
evaluate the stimuli. The results from an open-class version of this simulation
were comparable to the results reported here, but some of the stimuli in the middle
of the high FO continuum were identified as “owed.”

In order to compare the results of this simulation with listeners’ identification
performance, I calculated the probability of a hood response for each token using
Luce’s (1963) choice rule—the probability of a hood response is equal to the
similarity of the token to the hood category divided by the sum of the similarities
of the token to the hood and the hud categories, where ““similarity” is defined by
formula (2) above.

Figure 4 shows probability of a hood response as a function of token number
for both the high FO and low FO continua. These results show a clear speaker
normalization effect. That is, as has been found with human listeners (Johnson,
1990b; R. L. Miller, 1953), tokens with high FO were more likely to be identified
as hood. Later paragraphs will discuss some ways that the exemplar model’s
parameters can be adjusted to quantitatively simulate listener performance. For
now I want to emphasize the fact that the results shown in Figure 4 show that an
exemplar model optimized for correct vowel identification over a corpus of natu-
rally produced vowels shows a speaker normalization effect without any adjust-
ment of the model parameters.

In section 8.2.2 I discussed the possibility that base activation levels of ex-
emplars (N, in formula 2) might be sensitive to word frequency, giving rise to the
Ganong (1980) effect. Figure 5 shows a simulated Ganong effect produced by
manipulating base activation level (Figure 5 shows results for the low FO contin-
uum; results for the high FO continuum were comparable). As before, probability
of a hood response to tokens from the hood—hud continuum were calculated using
Luce’s choice rule. In one simulation hood was treated as a more frequent word
than hud by setting N, to 0.6 and N,.. 10 0.4 (where N,,,, indicates the N; values
associated with all of the exemplars of hood). Results of this simulation, using the
vowel-identification model parameters and forced-choice identification, are la-
beled ““greater hood base activation” in Figure 5. In a second simulation, hud was
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FIGURE4 A simulated speaker normalization effect. The response is of a vowel identification
exemplar model to a continuum ranging from hood to hud. One version of the continuum has an F0
value of 120 Hz (filled symbols) and another version has an FQ value of 240 Hz (open symbols).

treated as the more frequent word by reversing the N; values. Results of this
simulation are labeled “greater hud base activation” in Figure 5.

The boundary shift seen in this simulation is comparable to the boundary
shift found by Ganong (1980) when word frequencies of the response alternatives
were manipulated. He found a tendency for high-frequency words to be perceived
more often (requiring less convincing acoustic cues) than low-frequency words.
Similarly, in the exemplar model, when base activation of the exemplars of a
category is high a stimulus is more likely to be categorized as belonging to that
category than it would have been otherwise.

As mentioned above, the effect of syntactic and semantic expectations on
speech perception can also be modeled by manipulating base activation. I could

- have said that Figure 5 shows a simulation of the perception of the hood—hud

continuum in two semantic contexts, one that leads to the expectation that the
word will be hood and one that leads to the expectation that the word will be /ud.
In this interpretation the N; values reflect semantic priming rather than word
frequency.
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FIGURE 5 A simulated Ganong effect. The figure shows the response of a vowel identification
exemplar model to a continuum ranging from hood to hud (low-FO stimuli only). When the base
activation levels of all hood exemplars were elevated there were more “hood” responses (open
symbols), and when the base activation levels of all hud exemplars were elevated there were more
“hud” responses (filled symbols).

8.4.5 Simulating the ‘‘Presentation Type” Effect

In Johnson (1990b) I reported that a speaker normalization effect (for the
hood—hud continuum that we have been discussing) occurs when the stimuli are
randomly intermixed, but disappears when the stimuli are blocked by FO. Analo-
gous effects have been found in vowel identification (see Nearey, 1989, Tables 1
& 2) and auditory word recognition (Mullennix, et al., 1989). These studies have
found that perceptual accuracy is reduced when words produced by different
speakers are randomly intermixed, as compared to perception of the same stimuli
blocked by speaker.

Nusbaum and Morin (1992) presented data suggesting that mixed-speaker
presentation causes listeners to shift their attention to acoustic properties that are
relevant for speaker identification (FO and higher formants in their experiment). It
makes sense to assume that listeners will tend to focus their attention to stimulus
dimensions that vary from trial to trial, and thus that in a mixed-speaker presen-
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tation listeners will attend more to FO than they do when stimuli are blocked by
speaker. This predicts that in simulating the results of Johnson (1990b), the atten-
tion weight for FO will be larger in the mixed condition than in the blocked
condition.

Figure 6 shows the perceptual data from Johnson (1990b) plotted with light
lines, and the results of an exemplar model simulation of the experiment plotted
with dark lines. Figure 6A shows the blocked-speaker condition, and Figure 6B
shows the mixed-speaker condition. Responses to stimuli with high FO (240 Hz)
are plotted with open squares and responses to stimuli with low FO (120 Hz) are
plotted with filled squares. The separation of the response functions for low and
high FO tokens in the mixed condition is similar to the “‘speaker normalization
effect” simulated in section 8.4.4 (see Figure 4). However, the magnitude of the
separation is much larger in the listeners’ performance.$

To simulate this experiment the simulated annealing procedure was used to
find model parameters that gave the best fit to the actual data in the blocked
condition (assuming that the N; for hood and hud exemplars were 1 and those for
all other vowel categories were 0, and using Luce’s choice rule as before). Then
model parameters that provided the best fit to the actual data in the mixed condi-
tion were found. The model parameters and root mean square (RMS) error are
shown in Table I.

The fits to the data are quite good; the predicted identification results are
different from the actual data by only about 5% for each token on average. Also,
as predicted by Nusbaum and Morin (1992), the attention weight for FO was larger
in the mixed condition than in the blocked condition. Note that the model para-
meters that gave the best fit in the blocked condition are very similar to the
parameters that were found in the vowel identification task, and that the model
parameters that gave the best fit in the mixed condition were similar to the para-
meters found to provide maximally accurate sex identification. This finding is
consistent with the hypothesis that listeners focus their attention on the changing
identity of the speaker in the mixed condition. Interestingly, this pattern of atten-
tion allocation may also be detrimental for vowel identification.

I tested this speculation by running the vowel identification simulation that
was described in section 8.4.2, with the model parameters found in this simulation
for the mixed FO condition. Vowel identification accuracy was reduced from 80%
(the best the exemplar model could do) to 72%. This result (as well as the experi-
mental findings reported by Nusbaum & Morin, 1992) suggests that the talker
variability effect found by Mullennix et al. may have been caused by a tendency
for listeners’ attention in the mixed condition to be drawn to acoustic properties
that are more relevant for speaker identification than for word recognition.

®The lack of boundary shift in blocked condition may have resulted from the fact that the synthetic
stimuli were more similar to male exemplars, or may have been the result of a Parducci (1975)-style
response bias.
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FIGURE 6 Model fits to the Johnson (1990b) presentation-type experiment. The actual data are
shown with light lines and symbols (open for high FO tokens, and filled for low FO tokens). Model fits

are shown with darker lines. (A) the data and model fits for the blocked condition; (B) the data and
model fits for the mixed condition.
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8.5 CONCLUSION

In this chapter I have outlined an exemplar-based model of speech perception,
indicated some ways that the basic model can be elaborated, and presented results
of several simulations showing that this model of speech perception mimics some
aspects of human vowel perception performance and response to talker variability .

The picture of vowel normalization that emerges from this study is radically
different from the traditional view. In this approach, speaker normalization behav-
ior (both the ability to recognize vowels produced by different speakers and the
presence of a boundary shift in the hood—hud continuum) is not caused by a
representation changing process. Instead, these patterns of behavior emerge from
the complex internal structure of linguistic categories. Because the model retains
the variability encountered in speech it is able to cope with the variability that it
encounters in new tokens. That is, the model uses talker variability in speech
processing.

The title of this chapter, “Speech perception without speaker normalization”
implies that I view speech perception as a passive process (see Nusbaum & Mag-
nuson, Chap. 6, this volume). This is not the case. | have explicitly assumed that
listeners may selectively shift their attention to different acoustic aspects of the
speech signal, may cyclically focus attention on the signal, and may use top-down
information to increase sensitivity to selected perceptual categories. All of these
sources of flexibility in listener’s behavior involve active response to the listening
situation. However, I do not include among the active processes of speech percep-
tion representation-changing normalization routines of any sort. The model out-
lined here is an active, flexible mode] of speech perception without speaker
normalization.

I have focused on one particular source of variability in the speech signal—
acoustic differences between talkers. Here [ would like to point out that I expect
that the elaborated model outlined in section 8.3 will also be able to handle other
sources of variability as well. For example, the model would compensate for
dialect variation by using the dialect variability inherent in remembered exem-
plars. Some effects of dialect familiarity, for instance, would emerge naturally
from this model without having to suppose that a dialect “normalization” rule is
learned. Variation in the speech signal caused by changes in speaking rate would
be handled in the same way (including vowel reduction and even resyllabification
and extensive gestural reorganization). So, although I have focused on talker
variability in this chapter, I am aiming for a general model that uses the same
mechanism to handle many different sources of variability in the speech signal.

Although much remains to be specified, an exemplar-based approach offers
an important alternative to the traditional view of speech perception. Future re-
search needs to be devoted to fleshing out the elaborated model, and exploring
control mechanisms that might be used to manage the flexibility of an exemplar
model.
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